首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of arrays for light‐driven charge separation is presented, in which perylene tetracarboxylic bisimide is the light‐absorbing chromophore and electron acceptor, whereas isoxazolidines are colourless electron donors, the electron‐releasing properties of which are increased with respect to the amino group by means of the α‐effect. Charge separation (CS) in toluene over a distance ranging from ≈10 to ≈16 Å, with efficiencies of ≈95 to ≈50 % and CS lifetimes from 300 ps to 15 ns, are demonstrated. In dichloromethane the charge recombination reaction is faster than charge separation, preventing accumulation of the CS state. The effects of solvent polarity and molecular structure are discussed in the frame of current theories.  相似文献   

2.
Charge separation is one of the most crucial processes in photochemical dynamics of energy conversion, widely observed ranging from water splitting in photosystem II (PSII) of plants to photoinduced oxidation reduction processes. Several basic principles, with respect to charge separation, are known, each of which suffers inherent charge recombination channels that suppress the separation efficiency. We found a charge separation mechanism in the photoinduced excited-state proton transfer dynamics from Mn oxides to organic acceptors. This mechanism is referred to as coupled proton and electron wave-packet transfer (CPEWT), which is essentially a synchronous transfer of electron wave-packets and protons through mutually different spatial channels to separated destinations passing through nonadiabatic regions, such as conical intersections, and avoided crossings. CPEWT also applies to collision-induced ground-state water splitting dynamics catalyzed by Mn4CaO5 cluster. For the present photoinduced charge separation dynamics by Mn oxides, we identified a dynamical mechanism of charge recombination. It takes place by passing across nonadiabatic regions, which are different from those for charge separations and lead to the excited states of the initial state before photoabsorption. This article is an overview of our work on photoinduced charge separation and associated charge recombination with an additional study. After reviewing the basic mechanisms of charge separation and recombination, we herein studied substituent effects on the suppression of such charge recombination by doping auxiliary atoms. Our illustrative systems are X–Mn(OH)2 tied to N-methylformamidine, with X=OH, Be(OH)3, Mg(OH)3, Ca(OH)3, Sr(OH)3 along with Al(OH)4 and Zn(OH)3. We found that the competence of suppression of charge recombination depends significantly on the substituents. The present study should serve as a useful guiding principle in designing the relevant photocatalysts.  相似文献   

3.
This article draws, with a simplified but rigorous approach, the typical procedure for the design and optimization of functional multicomponent structures for light to chemical energy conversion for two series of multipartite structures based on prototypical chromophores: polypyridyl metal complexes and porphyrinoids. Starting from a photophysical study performed by steady‐state and time‐resolved spectroscopic methods, the full deactivation dynamics of the light‐absorbing chromophore(s) are disclosed. The preferred deactivation step (electron transfer in this case) is then optimized. This can be done by simply operating on the solvent, but also by changing structure/components that can alter electronic and nuclear factors, via continuous feedback with the research groups in charge of the synthesis. With a presentation suitable for a wide audience, it is here discussed how the effective design of functional multicomponent structures for charge separation can be achieved.

  相似文献   


4.
An assembly has been synthesised that consists of four units: a meso‐substituted corrole (C3), perylene bisimide (PI), and two electron‐rich triphenylamine (DPA) units. PI is connected through a 1,4‐phenylene bridge to C3, whereas the two DPA units are linked to C3 through a diphenyl ether linkage, which is used for the first time to connect the various moieties. Various synthetic strategies were elaborated, and the chosen one afforded the final system in six steps in an overall yield of 6 %. The resulting assembly, made of three different units, was named a “triad”. Excitation of the corrole (C3) or perylene bisimide (PI) units led to the charge‐separated state DPA‐C3+‐PI? with a rate k>1011 s?1 in benzonitrile and dichloromethane (CH2Cl2) or with k of the order of 1010 s?1 in toluene. The latter charge‐separated state decayed to the ground state with a rate k=1.8×109 s?1 in toluene. In the polar solvents benzonitrile and dichloromethane, recombination to the ground state competes with a charge shift to form the distal charge‐separated state, DPA+‐C3‐PI?, the formation of which occurs with a yield of 50 %. Recombination to the ground state of DPA+‐C3‐PI? occurs with a rate k=5×107 s?1 in CH2Cl2 and k=2×107 s?1 in benzonitrile.  相似文献   

5.
Lithium‐ion‐encapsulated [6,6]‐phenyl‐C61‐butyric acid methyl ester fullerene (Li+@PCBM) was utilized to construct supramolecules with sulfonated meso‐tetraphenylporphyrins (MTPPS4?; M=Zn, H2) in polar benzonitrile. The association constants were determined to be 1.8×105 M ?1 for ZnTPPS4?/Li+@PCBM and 6.2×104 M ?1 for H2TPPS4?/Li+@PCBM. From the electrochemical analyses, the energies of the charge‐separated (CS) states were estimated to be 0.69 eV for ZnTPPS4?/Li+@PCBM and 1.00 eV for H2TPPS4?/Li+@PCBM. Upon photoexcitation of the porphyrin moieties of MTPPS4?/Li+@PCBM, photoinduced electron transfer occurred to produce the CS states. The lifetimes of the CS states were 560 μs for ZnTPPS4?/Li+@PCBM and 450 μs for H2TPPS4?/Li+@PCBM. The spin states of the CS states were determined to be triplet by electron paramagnetic resonance spectroscopy measurements at 4 K. The reorganization energies (λ) and electronic coupling term (V) for back electron transfer (BET) were determined from the temperature dependence of kBET to be λ=0.36 eV and V=8.5×10?3 cm?1 for ZnTPPS4?/Li+@PCBM and λ=0.62 eV and V=7.9×10?3 cm?1 for H2TPPS4?/Li+@PCBM based on the Marcus theory of nonadiabatic electron transfer. Such small V values are the result of a small orbital interaction between the MTPPS4? and Li+@PCBM moieties. These small V values and spin‐forbidden charge recombination afford a long‐lived CS state.  相似文献   

6.
2,4,6-Tri(4-pyridyl)-1,3,5-triazine (tpt) is a widely used ligand for functional coordination compounds. In this work, tpt has shown unprecedented photochromism in the crystalline state. Experimental and theoretical data has revealed that the photocoloration of tpt very likely originates from intramolecular charge separation and the formation of a triplet diradical product. This finding demonstrates a new simple, neutral photochromic molecule and endows the tpt molecule and related compounds with potential optical applications.  相似文献   

7.
A couple of corrole–perylene carboximide dyads ( C2‐PIa and C2‐PIx ) have been synthesized and their photoreactivity has been evaluated. We aimed at obtaining better performances for photoinduced charge separation, both in terms of efficiency and in terms of lifetime, with respect to formerly studied systems. The energy level of the charge‐separated state was tuned by selecting perylene and corrole components with diverse redox and spectroscopic properties. High spectroscopic energy levels of the perylene carboximide derivatives (PIs) allow a fast charge separation to be maintained in competition with an energy‐transfer process from the PI to the corrole unit. Yields and lifetimes of charge separation in toluene are, respectively, 75 % and 2.5 μs for C2‐PIa and 65 % and 24 ns for C2‐PIx . The results and the effect of solvent polarity are discussed in the framework of current energy‐ and electron‐transfer theories.  相似文献   

8.
The unprecedented dependence of final charge separation efficiency as a function of donor–acceptor interaction in covalently‐linked molecules with a rectilinear rigid oligo‐p‐xylene bridge has been observed. Optimization of the donor–acceptor electronic coupling remarkably inhibits the undesirable rapid decay of the singlet charge‐separated state to the ground state, yielding the final long‐lived, triplet charge‐separated state with circa 100 % efficiency. This finding is extremely useful for the rational design of artificial photosynthesis and organic photovoltaic cells toward efficient solar energy conversion.  相似文献   

9.
刘立维  施敏敏  邓丹  汪茫  陈红征 《化学学报》2008,66(19):2163-2169
合成了萘酞菁锌, 利用傅立叶红外光谱、元素分析和MALDI-TOF质谱等手段表征了分子结构; 循环伏安测试和吸收光谱确认了共轭体系的扩大使分子带隙下降. 根据材料加工性能的不同, 分别采用溶液法、层-层蒸镀(Layer-by-layer evaporation)法和单层分散旋涂法, 将给体分子萘酞菁锌与三种受体分子1-(3-甲氧基羧基)丙基-1-苯 基-[6,6]C61, C60和N,N’-二嘧啶基苝四羧基二酰亚胺进行了复合, 通过研究复合前后荧光变化, 确认了给体-受体两相界面处发生了由分子能级差引发的光致电荷转移, 为制备更宽光伏响应范围的太阳能电池器件提供了潜在的新途径.  相似文献   

10.
Using a combination of cycloaddition-retroelectrocyclization reaction, free-base and zinc porphyrins (H2P and ZnP) are decorated at their β-pyrrole positions with strong charge transfer complexes, viz., tetracyanobuta-1,3-diene (TCBD)-phenothiazine ( 3 and 4 ) or TCBD-aniline ( 7 and 8 ), novel class of push-pull systems. The physico-chemical properties of these compounds (MP-Donor and MP-TCBD-Donor) have been investigated using a range of electrochemical, spectroelectrochemical, DFT as well as steady-state and time-resolved spectroscopic techniques. Ground-state charge transfer interactions between the porphyrin and the electron-withdrawing TCBD directly attached to the porphyrin π-system extended the absorption features well into the near-infrared region. To visualize the photo-events, energy level diagrams with the help of free-energy calculations have been established. Switching the role of porphyrin from the initial electron acceptor to electron donor was possible to envision. Occurrence of photoinduced charge separation has been established by complementary transient absorption spectral studies followed by global and target data analyses. Better charge stabilization in H2P derived over ZnP derived conjugates, and in phenothiazine derived over aniline derived conjugates has been possible to establish. These findings highlight the importance of the nature of porphyrins and second electron donor in governing the ground and excited state charge transfer events in closely positioned donor-acceptor conjugates.  相似文献   

11.
A new series of self‐assembled supramolecular donor–acceptor conjugates capable of wide‐band capture, and exhibiting photoinduced charge separation have been designed, synthesized and characterized using various techniques as artificial photosynthetic mimics. The donor host systems comprise of a 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) containing a crown ether entity at the meso‐position and two styryl entities on the pyrrole rings. The styryl end groups also carried additional donor (triphenylamine or phenothiazine) entities. The acceptor host system was a fulleropyrrolidine comprised of an ethylammonium cation. Owing to the presence of extended conjugation and multiple chromophore entities, the BODIPY host revealed absorbance and emission well into the near‐IR region covering the 300–850 nm spectral range. The donor–acceptor conjugates formed by crown ether–alkyl ammonium cation binding of the host–guest system was characterized by optical absorbance and emission, computational, and electrochemical techniques. Experimentally determined binding constants were in the range of 1–2×105 M ?1. An energy‐level diagram to visualize different photochemical events was established using redox, computational, absorbance, and emission data. Spectral evidence for the occurrence of photoinduced charge separation in these conjugates was established from femtosecond transient absorption studies. The measured rates indicated ultrafast charge separation and relatively slow charge recombination revealing their usefulness in light‐energy harvesting and optoelectronic device applications. The bis(donor styryl)BODIPY‐derived conjugates populated their triplet excited states during charge recombination.  相似文献   

12.
Photodynamic behavior controlled by the synergy of electron transfer and charge transfer has been characterized in two regioisomeric pyridinium-bearing coordination polymers ( Cd-Bip and Cd-Bpy ) with the help of a smart charge-distribution-related isoreticular strategy. Because it is relatively weak, the charge-transfer interaction between adjacent 2D networks in Cd-Bip can be easily perturbed by photoinduced electron transfer under irradiation with 365 nm light, and then successfully drives the occurrence of photodynamic behavior. In contrast, lower energy 450 nm light is absorbed to a lesser extent, and can only induce a low degree of electron transfer, which is insufficient to actuate operation of this photodynamic behavior in Cd-Bip .  相似文献   

13.
半导体超微粒子与有机分子界面的光致电行转移过程是当前光化学和材料科学研究的一个活跃领域[‘,2];研究的目的主要有两个方面,一是研究半导体超微粒子表面光致电行转移的特性;二是研究有机分子对超微粒子的光敏化作用.目前,超微粒子的功能化研究日益深入,其独特的光  相似文献   

14.
The photovoltaic features and photo-induced interfacial charge transfer of CuPc-modified Q-CdS films were investigated by surface photovoltage spectra and optical absorption spectra. The results show that the interfacial charge transfer and photosensitization between CuPc and Q-CdS occur under illumination. Based on the observations, the generation and processes of the charge transfer are proposed and discussed.  相似文献   

15.
Electron transfer is a common characteristic in fullerene complexes and brings about an optoelectronic effect in a polymer-C60 composite and superconductivity in alkali-metal doped C60. This paper reports that the concept of self-trapping of the transferred electron in C60 can explain the main features of photoinduced electron transfer in a polymer-CC60 composite and electron pairing in alkali-metal doped C60.  相似文献   

16.
An intensive investigation of structure–property relationships in the aggregation‐induced enhanced emission (AIEE) of luminescent compounds is essential for the rational design of highly emissive solid‐state materials. In the AIEE‐active compounds N,N′‐bis[3‐hydroxy‐4‐(2′‐benzothiazolyl)phenyl]isophthalamide and N,N′‐bis[3‐hydroxy‐4‐(2′‐benzothiazolyl)phenyl]‐5‐tert‐butylisophthalamide, fast photoinduced twisted intramolecular charge transfer (TICT) of the enol excited state is found to be mainly responsible for the weak emission of their dilute solutions. The photoinduced TICT enol excited state is formed with a greatly distorted configuration, due to the large rotation about the C? N single bond. This facilitates nonradiative TICT decay from the normal enol excited state to the highly twisted enol excited state, rather than proton‐transfer decay to the keto excited state. In aggregates, photoinduced nonradiative deactivation of TICT is strongly prohibited, so that excited‐state intramolecular proton transfer (ESIPT) becomes the dominant decay, and hence contributes greatly to the subsequent emission enhancement of the keto form. Molecular design and investigation of analogous single‐armed compounds further verifies this kind of AIEE mechanism.  相似文献   

17.
Interest in molecular silicon semiconductors arises from the properties shared with bulk silicon like earth abundance and the unique architectures accessible from a structure distinctly different than rigid π‐conjugated organic semiconductors. We report ultrafast spectroscopic evidence for direct, photoinduced charge separation in molecular silicon semiconductors that supports the viability of molecular silicon as donor materials in optoelectronic devices. The materials in this study are σ–π hybrids, in which electron‐deficient aromatic acceptors flank a σ‐conjugated silicon chain. Transient absorption and femtosecond‐stimulated Raman spectroscopy (FSRS) techniques revealed signatures consistent with direct, optical charge transfer from the silane chain to the acceptor; these signatures were only observed by probing excited‐state structure. Our findings suggest new opportunities for controlling charge separation in molecular electronics.  相似文献   

18.
19.
半导体光生电荷分离是光催化过程中的关键步骤之一,其效率极大地影响了最终光催化性能.将TiO2纳米片与石墨烯复合,能够促进TiO2中光生电子和空穴的分离,从而提高其光催化活性.为了研究光生电荷的分离对TiO2/石墨烯复合材料光催化性能的影响,通过调控TiO2纳米片的尺寸来调节TiO2/石墨烯复合材料中光生电荷分离的能力,然后研究其对TiO2/石墨烯复合材料光催化性能的影响.合成了一系列不同厚度的TiO2纳米片,将其与石墨烯复合,并通过光沉积负载Pt纳米颗粒作为助催化剂,用于光催化产氢.实验结果显示,随着TiO2纳米片厚度减小,其与石墨烯形成的复合结构的光催化性能显著提高.这主要是由于TiO2纳米片厚度减小时,光生电子沿厚度方向穿过TiO2纳米片迁移到石墨烯的距离缩短,从而减少了光生电子在迁移过程中与空穴的复合;同时TiO2纳米片厚度减小使其比表面积增大,使得TiO2/石墨烯界面面积增大,从而使石墨烯更好地分离出TiO2中的光生电子,有更多的光生电子到达石墨烯参与催化反应,提高TiO2/石墨烯复合材料的光催化性能.此研究表明通过控制TiO2纳米片的尺寸来调控TiO2/石墨烯复合材料中光生电子和空穴的分离,是显著提高其光催化性能的有效途径.  相似文献   

20.
Novel photosynthetic reaction center model compounds of the type donor2–donor1–acceptor, composed of phenothiazine, BF2‐chelated dipyrromethene (BODIPY), and fullerene, respectively, have been newly synthesized using multistep synthetic methods. X‐ray structures of three of the phenothiazine‐BODIPY intermediate compounds have been solved to visualize the substitution effect caused by the phenothiazine on the BODIPY macrocycle. Optical absorption and emission, computational, and differential pulse voltammetry studies were systematically performed to establish the molecular integrity of the triads. The N‐substituted phenothiazine was found to be easier to oxidize by 60 mV compared to the C‐substituted analogue. The geometry and electronic structures were obtained by B3LYP/6‐31G(dp) calculations (for H, B, N, and O) and B3LYP/6‐31G(df) calculations (for S) in vacuum, followed by a single‐point calculation in benzonitrile utilizing the polarizable continuum model (PCM). The HOMO?1, HOMO, and LUMO were, respectively, on the BODIPY, phenothiazine and fullerene entities, which agreed well with the site of electron transfer determined from electrochemical studies. The energy‐level diagram deduced from these data helped in elucidating the mechanistic details of the photochemical events. Excitation of BODIPY resulted in ultrafast electron transfer to produce PTZ–BODIPY.+–C60.?; subsequent hole shift resulted in PTZ.+–BODIPY–C60.? charge‐separated species. The return of the charge‐separated species was found to be solvent dependent. In nonpolar solvents the PTZ.+–BODIPY–C60.? species populated the 3C60* prior to returning to the ground state, while in polar solvent no such process was observed due to relative positioning of the energy levels. The 1BODIPY* generated radical ion‐pair in these triads persisted for few nanoseconds due to electron transfer/hole‐shift mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号