首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential energy surfaces of dissociation and elimination reactions for CH(3)COCl in the ground (S0) and first excited singlet (S1) states have been mapped with the different ab inito calculations. Mechanistic photodissociation of CH(3)COCl has been characterized through the intrinsic reaction coordinate and ab initio molecular dynamics calculations. The alpha-C-C bond cleavage along the S1 pathway leads to the fragments of COCl((2)A' ') and CH(3) ((2)A') in an excited electronic state and a high barrier exists on the pathway. This channel is inaccessible in energy upon photoexcitation of the CH(3)COCl molecules at 236 nm. The S1 alpha-C-Cl bond cleavage yields the Cl((2)P) and CH(3)CO(X(2)A') fragments in the ground state and there is very small or no barrier on the pathway. The S1 alpha-C-Cl bond cleavage proceeds in a time scale of picosecond in the gas phase, followed by CH(3)CO decomposition to CH(3) and CO. The barrier to the C-Cl bond cleavage on the S1 surface is significantly increased by effects of the argon matrix. The S1 alpha-C-Cl bond cleavage in the argon matrix becomes inaccessible in energy upon photoexcitation of CH(3)COCl at 266 nm. In this case, the excited CH(3)COCl(S1) molecules cannot undergo the C-Cl bond cleavage in a short period. The internal conversion from S1 to S0 becomes the dominant process for the CH(3)COCl(S1) molecules in the condensed phase. As a result, the direct HCl elimination in the ground state becomes the exclusive channel upon 266 nm photodissociation of CH(3)COCl in the argon matrix at 11 K.  相似文献   

2.
The potential energy surfaces of isomerization and dissociation reactions for CH2CHCOCl in the S0, T1, T2, and S1 states have been mapped with DFT, CASSCF, MP2, and MR-CI calculations. Rate constants for adiabatic and nonadiabatic processes have been calculated with the RRKM rate theory, in conjugation with the vibronic interaction method. Mechanistic photochemistry of CH2CHCOCl at 230-310 nm has been characterized through the computed potential energy surfaces and rate constants. Upon photoexcitation of CH2CHCOCl at 310 nm, the S1-->T1 intersystem crossing is the dominant primary process, which is followed by the 1,3-Cl migration along the T1 pathway. Meanwhile, the S1-->S0 internal conversion occurs with considerable probability and the subsequent trans-cis isomerization proceeds in the ground state. The C-Cl bond cleavage is an exclusive primary channel upon photoexcitation of gaseous CH2CHCOCl at 230 nm. The direct C-Cl bond cleavage is partially blocked by effects of the matrix, and the internal conversion from S1 to S0 becomes an important process for the excited molecule to deactivate in the condensed phase. The present calculations not only provide a reasonable explanation of the experimental findings, but also give new insight into the mechanistic photochemistry of CH2CHCOCl.  相似文献   

3.
In the present work, the wavelength-dependent mechanistic photochemistry of glyoxal in the gas phase has been explored by ab initio calculations of potential-energy surfaces, surface crossing points, and adiabatic and nonadiabatic rates. The CHOCHO molecules in S1 by photoexcitation at 393-440 nm mainly decay to the ground state via internal conversion, which is followed by molecular eliminations to form CO, H2CO,H2, and HCOH. Upon photodissociation of CHOCHO at 350-390 nm, intersystem crossing to T1 followed by the C-C bond cleavage is the dominant process in this wavelength range, which is responsible for the formation of the CHO radicals. The C-C and C-H bond cleavages along the S1 pathway are energetically accessible upon photodissociation of CHOCHO at 290-310 nm, which can compete with the S1-->T1 intersystem crossing process. The present study predicts that the C-H bond cleavage on the S1 surface is probably a new photolysis pathway at high excitation energy, which has not been observed experimentally. In addition, the trans-cis isomerization is predicted to occur more easily in the ground state than in the excited states.  相似文献   

4.
In recent years, the photodissociation dynamics of aryl halides has been a subject of intensive studies, which is closely related to the atmospheric chemistry. Here we present a review on the photochemistry of aryl halides, with emphasis on the recent progress in photodissociation dynamics at 266 nm by using photofragment translational spectroscopy. The ab initio calculations have also been employed to investigate those photodissociation processes. It has been found that the photodissociation of aryl halides at 266 nm is attributed to the nonadiabatic process via intersystem crossings from bound singlet excited state to triplet excited state and/or via internal conversion from bound singlet excited state to ground state. Also, the substitution effects in the photodissociation dynamics of aryl halides are discussed.  相似文献   

5.
The selectivity of the alpha C-Cl and beta C-Br bond fissions upon n-->pi(*) excitation of bromoacetyl chloride has been investigated with combined nonadiabatic Rice-Ramsperger-Kassel-Marcus theory and ab initio molecular dynamics calculations, which are based on the potential energy profiles calculated with the complete active space self-consistent field and multireference configuration interaction methods. The Zhu-Nakamura [J. Chem. Phys. 101, 10630 (1994); 102, 7448 (1995)] theory is chosen to calculate the nonadiabatic hopping probability. It is found that nonadiabatic effect plays an important role in determining selective dissociations of the C-Cl and C-Br bonds. The calculated rate constants are close to those from experimentally inferred values, but the branching ratio of the alpha C-Cl and beta C-Br bond fissions is different from the experimental findings. The direct molecular dynamics calculations predict that fission of the C-Cl bond occurs on a time scale of picoseconds and cleavage of the beta C-Br bond proceeds with less probability within the same period. This reveals that the initial relaxation dynamics is probably another important factor that influences the selectivity of the C-Cl and C-Br bond fissions in photodissociation of BrCH(2)COCl at 248 nm.  相似文献   

6.
The photodissociation of p-methylphenol, p-ethylphenol, and p-(2-aminoethyl)phenol, chromophores of the amino acid tyrosine, was studied separately for each compound in a molecular beam at 248 nm using multimass ion imaging techniques. They show interesting side-chain size-dependent dissociation properties. Only one dissociation channel, that is, H atom elimination, was observed for both p-methylphenol and p-ethylphenol. The photofragment translational energy distributions and potential energy surfaces from ab initio calculation suggest that H atom elimination occurs from a repulsive excited state. On the other hand, the H atom elimination channel is quenched completely by internal conversion and/or intersystem crossing in p-(2-aminoethyl)phenol. Only C-C bond cleavage was observed from p-(2-aminoethyl)phenol. The photofragment translational energy distribution shows a slow component and a fast component. The fast component results from dissociation on an electronic excited state, but the slow component occurs only after the internal conversion to the ground electronic state. Comparison with the photodissociation of phenol and ethylbenzene is made.  相似文献   

7.
利用时间分辨傅立叶变换红外(TR-FTIR)发射光谱研究了气相中CH2=CHCOCl分子的光解动力学.观测到振动激发的光解碎片分子CO(ν≤5),HCl(ν≤6),C2H2和相应的两个光解离通道:C-Cl键断裂和HCl消除通道.通过分析转动分辨的红外发射光谱得到CO和HCl的初始振转能量态分布,由此提出CH2=CHCOCl的气相光解机理并阐明了内转换等非绝热过程在影响反应途径中的关键作用.  相似文献   

8.
We use a combination of crossed laser-molecular beam experiments and velocity map imaging experiments to investigate the primary photofission channels of chloroacetone at 193 nm; we also probe the dissociation dynamics of the nascent CH(3)C(O)CH(2) radicals formed from C-Cl bond fission. In addition to the C-Cl bond fission primary photodissociation channel, the data evidence another photodissociation channel of the precursor, C-C bond fission to produce CH(3)CO and CH(2)Cl. The CH(3)C(O)CH(2) radical formed from C-Cl bond fission is one of the intermediates in the OH + allene reaction en route to CH(3) + ketene. The 193 nm photodissociation laser allows us to produce these CH(3)C(O)CH(2) radicals with enough internal energy to span the dissociation barrier leading to the CH(3) + ketene asymptote. Therefore, some of the vibrationally excited CH(3)C(O)CH(2) radicals undergo subsequent dissociation to CH(3) + ketene products; we are able to measure the velocities of these products using both the imaging and scattering apparatuses. The results rule out the presence of a significant contribution from a C-C bond photofission channel that produces CH(3) and COCH(2)Cl fragments. The CH(3)C(O)CH(2) radicals are formed with a considerable amount of energy partitioned into rotation; we use an impulsive model to explicitly characterize the internal energy distribution. The data are better fit by using the C-Cl bond fission transition state on the S(1) surface of chloroacetone as the geometry at which the impulsive force acts, not the Franck-Condon geometry. Our data suggest that, even under atmospheric conditions, the reaction of OH with allene could produce a small branching to CH(3) + ketene products, rather than solely producing inelastically stabilized adducts. This additional channel offers a different pathway for the OH-initiated oxidation of such unsaturated volatile organic compounds, those containing a C=C=C moiety, than is currently included in atmospheric models.  相似文献   

9.
The conformational system of propionic acid (CH3CH2COOH) is studied in solid argon. It is predicted by the ab initio calculations that this molecule has four stable conformers. These four structures are denoted Tt, Tg+/-, Ct, and Cg+/-, and they differ by the arrangement around the C-O and Calpha-C bonds. The ground-state Tt conformer is the only form present at 8 K after deposition of an argon matrix containing propionic acid. For the CH3CH2COOH and CH3CH2COOD isotopologues, narrow-band excitation of the first hydroxyl stretching overtone of the conformational ground state promotes the Calpha-C and C-O internal rotations producing the Tg+/- and Ct conformers, respectively. A subsequent vibrational excitation of the produced Tg+/- form induces its conversion to the Cg+/- conformer by rotation around the C-O bond. In the dark, all of the produced conformers decay to the conformational ground state at different rates. The decay kinetics and its temperature dependence allow the identification of the conformers by IR absorption spectroscopy, which is supported by ab initio calculations of their vibrational spectra. For the CH3CH2COOD isotopologue, the excitation of molecules isolated in different matrix sites results in site-dependent photoisomerization rates for the Calpha-C and C-O internal rotations, which also confirm the identification of the photoproducts.  相似文献   

10.
The stationary and intersection structures on the S(0) and S(1) potential energy surfaces of CH(3)COCH(2)Cl have been determined by the CAS(10,8)/cc-pVDZ optimizations and their relative energies are refined by the CASPT2//CAS(10,8)/cc-pVDZ single-point calculations. Non-adiabatic molecular dynamics simulations were performed on the basis of the state-averaged CAS(10,8)/cc-pVDZ calculated energies, energy gradients, and Hessian matrix for the S(0) and S(1) states. It is found that the features of the S(1) potential energy surface and non-adiabatic effect control the selectivity of the two α-C-C bond fissions, which provides a reasonable explanation why one α-C-C bond was observed as a primary channel and the other is ruled out even if CH(3)COCH(2)Cl is excited at 193 nm. The β-C-Cl fission is determined to be a dominant channel once the CH(3)COCH(2)Cl molecule is excited to the S(1) state and the β-C-Cl:α-C-C branching ratio is estimated by the RRKM rate theory to be 15:1 at 193 nm, which is overestimated in comparison with the value of ~11:1 inferred experimentally. The present calculation reveals that the α-C-C fission might take place in the ground electronic state as a result of the S(1) → S(0) internal conversion upon photolysis at 308 nm. However, the measured kinetic energy distributions of the α-C-C fission products suggest that the fission does not involve internal conversion to the ground state. To solve this issue, we need to perform non-adiabatic quantum dynamics simulation on accurate S(0), S(1), and S(2) potential energy surfaces, which is still a challenging task currently.  相似文献   

11.
Photodissociation of nitrobenzene at 193, 248, and 266 nm and o-nitrotoluene at 193 and 248 nm was investigated separately using multimass ion imaging techniques. Fragments corresponding to NO and NO(2) elimination from both nitrobenzene and o-nitrotoluene were observed. The translational energy distributions for the NO elimination channel show bimodal distributions, indicating two dissociation mechanisms involved in the dissociation process. The branching ratios between NO and NO(2) elimination channels were determined to be NONO(2)=0.32+/-0.12 (193 nm), 0.26+/-0.12 (248 nm), and 0.4+/-0.12(266 nm) for nitrobenzene and 0.42+/-0.12(193 nm) and 0.3+/-0.12 (248 nm) for o-nitrotoluene. Additional dissociation channels, O atom elimination from nitrobenzene, and OH elimination from o-nitrotoluene, were observed. New dissociation mechanisms were proposed, and the results are compared with potential energy surfaces obtained from ab initio calculations. Observed absorption bands of photodissociation are assigned by the assistance of the ab initio calculations for the relative energies of the triplet excited states and the vertical excitation energies of the singlet and triplet excited states of nitrobenzene and o-nitrotoluene. Finally, the dissociation rates and lifetimes of photodissociation of nitrobenzene and o-nitrotoluene were predicted and compared to experimental results.  相似文献   

12.
One of the fundamental photoreactions for ketones is Norrish type I reaction, which has been extensively studied both experimentally and theoretically. Its α bond-cleavage mechanisms are usually explained in an adiabatic picture based on the involved excited-state potential energy surfaces, but scarcely investigated in terms of a nonadiabatic picture. In this work, the S(1) α bond-cleavage reactions of CH(3)OC(O)Cl have been investigated by using the CASSCF and MRCI-SD calculations, and the ab initio based time-dependent quantum wavepacket simulation. The numerical results indicate that the photoinduced dissociation dynamics of CH(3)OC(O)Cl could exhibit strong nonadiabatic bond-fission characteristics for the S(1) α C-Cl bond cleavage, while the dynamics of the S(1) α C-O bond cleavage is mainly of adiabatic characteristics. This nonadiabatic mechanism for Norrish type I reaction of CH(3)OC(O)Cl is uncovered for the first time. The quantum wavepacket dynamics, based on the reduced-dimensional coupled potential energy surfaces, to some extent illustrates the significance of the nonadiabatic effect in the transition-state region on the dynamics of Norrish type I reaction.  相似文献   

13.
The nonadiabatic photodissociation dynamics of CH2BrCl into CH2Br + Cl or CH2Cl + Br is studied using two-dimensional wavepacket propagations on ab initio multiconfigurational MS-CASPT2 potential energy surfaces. Using a three-state diabatic model, we investigate the electronic states responsible for the two competing fragmentation channels and how the conical intersection present between the two lowest excited states affects the dissociation rate. Within this model, we find that the Br/Cl branching ratio depends on the irradiation wavelength. Predominant C-Br fragmentation occurs for wavelengths longer than 200 nm, while nonadiabatic C-Cl dissociation with a constant branching ratio of 0.4 is predicted upon absorption of photons in the range of 170-180 nm. Additionally, we observe complete nonadiabatic population transfer in less than 100 fs, that is, before the wavepacket can reach the conical intersection. As a consequence, there is no three-body CH2 + Br + Cl dissociation.  相似文献   

14.
Photodissociation of jet-cooled o-, m-, and p-ethyltoluene and p-fluoroethylbenzene at both 193 and 248 nm was studied separately using vacuum ultraviolet photoionization/multimass ion imaging techniques. Dissociation occurs exclusively through alkyl chain C-C bond cleavage. The measured photofragment translational energy distributions at 193 nm decrease monotonically with increasing translational energy. The distributions indicate that dissociation occurs from the ground electronic state after internal conversion. However, the photofragment translational energy distributions from o-, m-, and p-ethyltoluene obtained at 248 nm contain a slow and a fast component; the ratios between these components are 1:4, 1:1.3, and 1:6, respectively. On the other hand, only the slow component was observed from p-fluoroethylbenzene at 248 nm. The fast components are attributed to the dissociation from the triplet state after intersystem crossing, and the slow components result from the dissociation in the ground electronic state. Comparison with the photodissociation of benzene and toluene and ab initio calculation has been made.  相似文献   

15.
Aromatic amino acids have large UV absorption cross-sections and low fluorescence quantum yields. Ultrafast internal conversion, which transforms electronic excitation energy to vibrational energy, was assumed to account for the photostability of amino acids. Recent theoretical and experimental investigations suggested that low fluorescence quantum yields of phenol (chromophore of tyrosine) are due to the dissociation from a repulsive excited state. Radicals generated from dissociation may undergo undesired reactions. It contradicts the observed photostability of amino acids. In this work, we explored the photodissociation dynamics of the tyrosine chromophores, 2-, 3- and 4-hydroxybenzoic acid in a molecular beam at 193 nm using multimass ion imaging techniques. We demonstrated that dissociation from the excited state is effectively quenched for the conformers of hydroxybenzoic acids with intramolecular hydrogen bonding. Ab initio calculations show that the excited state and the ground state potential energy surfaces change significantly for the conformers with intramolecular hydrogen bonding. It shows the importance of intramolecular hydrogen bond in the excited state dynamics and provides an alternative molecular mechanism for the photostability of aromatic amino acids upon irradiation of ultraviolet photons.  相似文献   

16.
The competitive photodissociation of bromoacetyl chloride BrCH2COCl in the first 1A" state (S1) by 248 nm photons is investigated by nonadiabatic wave packet simulations. We show that the preferential breaking of the stronger C-Cl bond (alpha to the excited carbonyl) over the weaker C-Br bond (beta) could be explained by a diabatic trapping or nonadiabatic recrossing as previously proposed. Our energy resolved flux analysis agrees fairly well with the experimental branching ratio (C-Cl:C-Br=1.0:0.4). Even if this does not prove the mechanism, this at least prevents to discard it. A reduced dimensionality approach based on constrained Hamiltonian is used. The nonadiabatic dissociation is studied in the two C-O/C-X (X=Br, Cl) subspaces to emphasize the role of the C-O vibration upon [nO-->piCO*] excitation. The internal torsion and wagging dihedral angles are frozen at their Franck-Condon value, according to preliminary dynamical tests. The other inactive coordinates are optimized at the trans and Cs constrained geometry in the first excited state. Corresponding 2D cuts in the potential energy surfaces have been computed at the CASSCF level. The nonadiabatic kinetic couplings are highly peaked along an avoided crossing seam in both cases. A two-state diabatic model with a constant potential coupling is proposed in the two C-O/C-X subspaces. The inclusion of the C-O stretching in the active coordinates improves the value of the branching ratio over our previous 1D computation.  相似文献   

17.
Photodissociation dynamics of benzyl alcohol, C(6)H(5)CH(2)OH and C(6)H(5)CD(2)OH, in a molecular beam was investigated at 193 nm using multimass ion imaging techniques. Four dissociation channels were observed, including OH elimination and H(2)O elimination from the ground electronic state, H atom elimination (from OH functional group), and CH(2)OH elimination from the triplet state. The dissociation rate on the ground state was found to be 7.7 × 10(6) s(-1). Comparison to the potential energy surfaces from ab initio calculations, dissociation rate, and branching ratio from Rice-Ramsperger-Kassel-Marcus calculations were made.  相似文献   

18.
The photodissociation dynamics of chloroiodomethane (CH2ICl) at 193 nm has been investigated by employing the photofragment time-of-flight (TOF) mass spectrometric method. Using tunable vacuum ultraviolet undulator synchrotron radiation for photoionization sampling of nascent photofragments, we have identified four primary dissociation product channels: CH2Cl + I(2P(1/2))/I(2P(3/2)), CH2I + Cl(2P(1/2))/Cl(2P(3/2)), CHI + HCl, and CH2 + ICl. The state-selective detection of I(2P(3/2)) and I(2P(1/2)) has allowed the estimation of the branching ratio for I(2P(1/2)):I(2P(3/2)) to be 0.73:0.27. Theoretical calculations based on the time-dependent density-functional theory have been also made to investigate excited electronic potential-energy surfaces, plausible intermediates, and transition structures involved in these photodissociation reactions. The translation energy distributions derived from the TOF measurements suggest that at least two dissociation mechanisms are operative for these photodissociation processes. One involves the direct dissociation from the 2 1A' state initially formed by 193 nm excitation, leading to significant kinetic-energy releases. For the I-atom and Cl-atom elimination channels, the fragment kinetic-energy releases observed via this direct dissociation mechanism are consistent with those predicted by the impulsive dissociation models. Other mechanisms are likely predissociative or statistical in nature from the lower 1 1A' and 1 1A' states and/or the ground X 1A' state populated by internal conversion from the 2 1A' state. On the basis of the maximum kinetic-energy release for the formation of CH2Cl + I(2P(1/2)), we have obtained a value of 53+/-2 kcal/mol for the 0 K bond dissociation energy of I-CH2Cl. The intermediates and transition structures for the CHI + HCl and CH2 + ICl product channels have been also investigated by ab initio quantum calculations at the MP2(full)/6-311G(d) and B3LYP(full)/6-11G(d) levels of theory. The maximum kinetic-energy releases observed for the CHI + HCl and CH2 + ICl channels are consistent with the interpretation that the formation of CHI and CH2 in their ground triplet states is not favored.  相似文献   

19.
By using cavity ring-down absorption spectroscopy technique, we have observed the channel of Br2 molecular elimination following photodissociation of CF2Br2 at 248 nm. A tunable laser beam, which is crossed perpendicular to the photolyzing laser beam in a ring-down cell, is used to probe the Br2 fragment in the B 3Piou+-X1Sigmag+ transition. The vibrational population is obtained in a nascent state, despite ring-down time as long as 500-1000 ns. The population ratio of Br2(v=1)/Br2(v=0) is determined to be 0.4+/-0.2, slightly larger than the value of 0.22 evaluated by Boltzmann distribution at room temperature. The quantum yield of the Br2 elimination reaction is also measured to be 0.04+/-0.01. This work provides direct evidence to support molecular elimination occurring in the CF2Br2 photodissociation and proposes a plausible pathway with the aid of ab initio potential-energy calculations. CF2Br2 is excited probably to the 1B1 and 3B2 states at 248 nm. As the C-Br bond is elongated upon excitation, the coupling of the 1A'(1B1) state to the high vibrational levels of the ground state X 1A'(1A1) may be enhanced to facilitate the process of internal conversion. After transition, the highly vibrationally excited CF2Br2 feasibly surpasses a transition barrier prior to decomposition. According to the ab initio calculations, the transition state structure tends to correlate with the intermediate state CF2Br+Br(CF2Br...Br) and the products CF2+Br2. A sequential photodissociation pathway is thus favored. That is, a single C-Br bond breaks, and then the free-Br atom moves to form a Br-Br bond, followed by the Br2 elimination. The formed Br-Br bond distance in the transition state tends to approach equilibrium such that the Br2 fragment may be populated in cold vibrational distribution. Observation of a small vibrational population ratio of Br2(v=1)Br2(v=0) agrees with the proposed mechanism.  相似文献   

20.
Following photodissociation of CH2Br2 at 248 nm, Br2 molecular elimination is detected by using a tunable laser beam, as crossed perpendicular to the photolyzing laser beam in a ring-down cell, probing the Br2 fragment in the B 3Piou+ -X 1Sigmag+ transition. The nascent vibrational population is obtained, yielding a population ratio of Br2(v = 1)Br2(v = 0) to be 0.7 +/- 0.2. The quantum yield for the Br2 elimination reaction is determined to be 0.2 +/- 0.1. Nevertheless, when CH2Br2 is prepared in a supersonic molecular beam under cold temperature, photofragmentation gives no Br2 detectable in a time-of-flight mass spectrometer. With the aid of ab initio potential energy calculations, a plausible pathway is proposed. Upon excitation to the 1B1 or 3B1 state, C-Br bond elongation may change the molecular symmetry of Cs and enhance the resultant 1 1,3A'-X 1A' (or 1 1,3B1-X 1A1 as C2v is used) coupling to facilitate the process of internal conversion, followed by asynchronous concerted photodissociation. Temperature dependence measurements lend support to the proposed pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号