首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Identification of the serum proteome is a daunting analytical task due to the complex nature of the sample which has an extremely large dynamic range of protein components. This report addresses this issue by using centrifugal ultrafiltration to enrich the low-molecular-weight (LMW) serum proteome while decreasing the amount of abundant high-molecular-weight proteins. Reduction of the complex nature of the sample was achieved by fractionation of the LMW serum proteins using solution-phase isoelectric focusing (IEF). Multiple enzyme digestions are performed and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analysis of the tandem mass spectra resulted in the identification of 262 proteins belonging to LMW serum proteome. Our results demonstrate the effectiveness of this methodology to isolate and identify LMW proteins with improved confidence in the MS data acquired. In addition, our methodology can be combined with other multidimensional chromatography techniques performed on the peptide level to increase the number of identified proteins.  相似文献   

2.
In this study, we report a combined proteomic and peptidomic analysis of human plasma from patients with rheumatoid arthritis (RA) and controls. We used molecular weight cut-off filters (MWCO: 10 kDa) to enrich low-molecular-weight (LMW) peptides from human plasma. The peptide fraction was analyzed without trypsin digestion by capillary reversed-phase high-performance liquid chromatography (HPLC) coupled to a linear ion trap–FT-MS system, which identified 771 unique peptides in the peptidome study (from 145 protein progenitors). An anti-albumin/anti-IgG column was used to remove albumin and immunoglobulin G (IgG) from the human plasma. After that, the albumin/IgG-depleted sample was fractionated into a bound fraction and an unbound fraction on a multi-lectin affinity column (M-LAC). LC–MS analysis of the corresponding tryptic digests identified 308 proteins using the M-LAC approach. Relative differences in the following protein classifications were observed in the RA human plasma samples compared with controls: structural proteins, immuno-related proteins, protease inhibitors, coagulation proteins, transport proteins and apolipoproteins. While some of these proteins/peptides have been previously reported to be associated with RA disease such as calgranulin A, B, C and C-reactive protein, several others were newly identified (such as thymosin β4, actin, tubulin, and vimentin), which may further the understanding of the disease pathogenesis. Moreover, we have found that the peptidomic and glycoproteomic approaches were complementary and allow a more complete picture of the human plasma proteome which can be valuable in studies of disease etiology.  相似文献   

3.
We present a simple protocol for affinity depletion to remove the two most abundant serum proteins, albumin and immunoglobulin G (IgG). Under native conditions, albumin/IgG were efficiently removed and several proteins were enriched as shown by two-dimensional electrophoresis (2-DE). Besides that, partly denaturing conditions were established by adding 5 or 20% acetonitrile (ACN) in order to disrupt the binding of low-molecular-weight (LMW) proteins to the carrier proteins albumin/IgG. 2-DE results showed that the total number of detected LMW proteins increased under denaturing conditions when compared to native conditions. Interestingly, the presence of 5% ACN in serum revealed better enrichment of LMW proteins when compared to 20% ACN condition. Seven randomly distributed spots in albumin/IgG depleted serum samples under 5% ACN condition were picked from the 2-DE gels and identified by mass spectrometry (MS). The intensity of five LMW protein spots increased under denaturing conditions when compared to native conditions. Three of the seven identified spots (serum amyloid P, vitamin D-binding protein, and transthyretin) belong to a group of relatively low-abundant proteins, which make up only 1% of all serum proteins. The method presented here improves the resolution of the serum proteome by increasing the number of visualized spots on 2-D gels and allowing the detection and MS identification of LMW proteins and proteins of lower abundance.  相似文献   

4.
In this study, we describe characterization of the human plasma proteome based on analysis with multifunctional chitosan-GMA-IDA-Cu(II) nanospheres. Chitosan-GMA-IDA-Cu(II) nanospheres with diameters of 20 to 100?nm have unique properties due to multifunctional chemical moieties, high surface area, high capacity, good dispersibility in buffer solution as well as good biocompatibility and chemical stability which improves their specific interaction with peptides and proteins of the human plasma using different binding buffers. Combining these chitosan-GMA-IDA-Cu(II) nanospheres with MS spectrometry results in a novel strategy which should make it possible to characterize the plasma proteome in a single test. Peptides and proteins adsorbed on the nanosphere can be directly detected by MALDI-TOF-MS. The eluted lower molecular weight peptides and proteins are identified by nano-LC-ESI-MS/MS. A total of 842 unique LMW peptides and 1,682 human unredundant proteins IDs were identified in two different binding buffers, which included relatively low-level proteins (e.g., pg/mL of IL3 Interleukin-3) co-distributed with high-abundance proteins (e.g., 35?C55?mg/mL level serum albumin). As such, this nanosphere technique selectively enabled the identification of proteins over a dynamic range of greater than 8 orders of magnitude. Considering this capacity for selective enrichment of peptides and proteins in human plasma, and the large number of LMW peptides and proteins which can be identified, this method promises to accelerate discovery of biomarkers for clinical application.
Figure
The human plasma proteome based on analysis with multifunctional chitosan-GMA-IDA-Cu(II) nanospheres which improves their specific interaction with peptides and proteins of the human plasma using different binding buffers. Combining these chitosan-GMA-IDA-Cu(II) nanosphere with MS spectrometry, results in a novel strategy which should make it possible to characterize the plasma proteome in a single test.  相似文献   

5.
The medical demand for useful biomarkers is large and still increasing. This is especially true for cancer, because for this disease adequate diagnostic markers with high specificity and sensitivity are still lacking. Despite advances in imaging technologies for early detection of cancer, peptidomic multiplex techniques evolved in recent years will provide new opportunities for detection of low molecular weight (LMW) proteome biomarker (peptides) by mass spectrometry. Improvements in peptidomics research were made based on separation of peptides and/or proteins by their physico-chemical properties in combination with mass spectrometric detection, respectively identification, and sophisticated bioinformatic tools for data analysis. To evaluate the potential of serological tumor marker detection by differential peptide display (DPD) we analyzed plasma samples from a tumor graft model. After subcutaneous injection of HCT-116 cells in immunodeficient mice and their growth to a palpable tumor, plasma samples were analyzed by DPD. The comparison of obtained mass spectrometric data allows discovery of tumor specific peptides which fit well into the biological context of cancer pathogenesis and show a strong correlation to tumor growth. The identified peptides indicate events associated with hyper-proliferation and dedifferentiation of cells from an epithelial origin, which are typical characteristics of human carcinomas. We conclude that these findings are a "proof of principle" to detect differentially expressed, tumor-related peptides in plasma of tumor-bearing mice.  相似文献   

6.
Selective extraction of low molecular weight (LMW) proteins and peptides from complex biological samples plays an important role in the discovery of useful biomarkers and signaling molecules. Various methods, such as solid-phase extraction (SPE), ultrafiltration, and size-exclusion chromatography have been developed for such extraction purpose. In this study, we present, to our knowledge, the first demonstration of alkyl-diol@SiO2 mesoporous material MCM-41 (alkyl-diol group on the external surface of mesoporous material) for selective extraction of LMW proteins and peptides from complex biological samples. The adsorption kinetics of LMW proteins, the influence of pH on adsorption and the desorption recovery by different elution solvents were investigated by using standard proteins as model samples. It was demonstrated that the modification of alkyl-diol group on the external surface could efficiently decrease the adsorption of HMW protein and increase the desorption recovery of LMW protein. Furthermore, the mesoporous materials were applied to selectively extract LMW proteins and peptides (<10 kDa) from crude human plasma. And the modified MCM-41 material had much better extraction selectivity and efficiency for LMW proteins and peptides than unmodified one.  相似文献   

7.
Optimization of parameters for coverage of low molecular weight proteins   总被引:1,自引:0,他引:1  
Proteins with molecular weights of <25 kDa are involved in major biological processes such as ribosome formation, stress adaption (e.g., temperature reduction) and cell cycle control. Despite their importance, the coverage of smaller proteins in standard proteome studies is rather sparse. Here we investigated biochemical and mass spectrometric parameters that influence coverage and validity of identification. The underrepresentation of low molecular weight (LMW) proteins may be attributed to the low numbers of proteolytic peptides formed by tryptic digestion as well as their tendency to be lost in protein separation and concentration/desalting procedures. In a systematic investigation of the LMW proteome of Escherichia coli, a total of 455 LMW proteins (27% of the 1672 listed in the SwissProt protein database) were identified, corresponding to a coverage of 62% of the known cytosolic LMW proteins. Of these proteins, 93 had not yet been functionally classified, and five had not previously been confirmed at the protein level. In this study, the influences of protein extraction (either urea or TFA), proteolytic digestion (solely, and the combined usage of trypsin and AspN as endoproteases) and protein separation (gel- or non-gel-based) were investigated. Compared to the standard procedure based solely on the use of urea lysis buffer, in-gel separation and tryptic digestion, the complementary use of TFA for extraction or endoprotease AspN for proteolysis permits the identification of an extra 72 (32%) and 51 proteins (23%), respectively. Regarding mass spectrometry analysis with an LTQ Orbitrap mass spectrometer, collision-induced fragmentation (CID and HCD) and electron transfer dissociation using the linear ion trap (IT) or the Orbitrap as the analyzer were compared. IT-CID was found to yield the best identification rate, whereas IT-ETD provided almost comparable results in terms of LMW proteome coverage. The high overlap between the proteins identified with IT-CID and IT-ETD allowed the validation of 75% of the identified proteins using this orthogonal fragmentation technique. Furthermore, a new approach to evaluating and improving the completeness of protein databases that utilizes the program RNAcode was introduced and examined.  相似文献   

8.
The proteome of the human nucleolus was investigated in a single analysis using off-line strong cation exchange chromatography and microfraction collection combined with HPLC-chip/MS. The analysis was conducted either as a 1-D workflow with HPLC-chip alone or as a 2-D workflow. Two hundred and six unique proteins were identified in the International Protein Index human database corresponding to 2024 unique tryptic peptides identified in the 2-D analysis. In contrast, only 34 proteins and 151 corresponding tryptic peptides were found by applying a 1-D separation strategy. This clearly indicated that the complexity of the samples required the combination of more than one orthogonal separation technique. Stringent database search criteria, including reversal of sequences and therefore better exclusion of false-positive identifications, were applied for reliable protein identification.  相似文献   

9.
Comparative proteome data of normal and diseased tissue samples are difficult to interpret. Proteins detected in tissues are derived from different cell types and blood constituents. Pathologic or toxicant-induced aberrations may affect the proteome profile of tissues in several ways since different cell types may respond in very different and highly specific manners. The aim of this study was to analyze the proteome profiles of purified rat liver primary cells and of blood plasma in comparison to liver whole tissue. Moreover, we investigated alterations of these profiles induced by the liver toxicant N-nitrosomorpholine (NNM) used as a model compound. Whole liver samples, pure hepatocytes and Kupffer cells as well as blood plasma were obtained from saline- or NNM-treated rats. Proteins were separated by 2-D PAGE and their amounts were estimated by fluorography. Selected proteins were identified by MS analysis of tryptic digests. Among them we identified proteins exclusively expressed in the analysed constituents. Several of these proteins were assigned in the proteome profile of whole-tissue homogenates. Furthermore, we identified several proteins that were modified, up-regulated or down-regulated due to NNM treatment in total liver homogenates. Some of these protein alterations were specifically detected in primary cells isolated from NNM-treated rats. Thus, we demonstrated the successful assignment of NNM-induced proteome alterations in rat liver to the cell type of origin. The currently applied approach may help to better understand pathologic processes at a whole-tissue level.  相似文献   

10.
Skeletal muscle homeostasis is essential for the maintenance of a healthy and active lifestyle. Imbalance in muscle homeostasis has significant consequences such as atrophy, loss of muscle mass, and progressive loss of functions. Aging-related muscle wasting, sarcopenia, and atrophy as a consequence of disease, such as cachexia, reduce the quality of life, increase morbidity and result in an overall poor prognosis. Investigating the muscle proteome related to muscle atrophy diseases has a great potential for diagnostic medicine to identify (i) potential protein biomarkers, and (ii) biological processes and functions common or unique to muscle wasting, cachexia, sarcopenia, and aging alone. We conducted a meta-analysis using gene ontology (GO) analysis of 24 human proteomic studies using tissue samples (skeletal muscle and adipose biopsies) and/or biofluids (serum, plasma, urine). Whilst there were few similarities in protein directionality across studies, biological processes common to conditions were identified. Here we demonstrate that the GO analysis of published human proteomics data can identify processes not revealed by single studies. We recommend the integration of proteomics data from tissue samples and biofluids to yield a comprehensive overview of the human skeletal muscle proteome. This will facilitate the identification of biomarkers and potential pathways of muscle-wasting conditions for use in clinics.  相似文献   

11.
Wu F  Sun D  Wang N  Gong Y  Li L 《Analytica chimica acta》2011,698(1-2):36-43
Three surfactant-assisted shotgun methods using acid labile surfactants, sodium-3-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)-methoxyl]-1-propanesulfonate (RapiGest) and 3-[3-(1,1-bisalkyloxyethyl)pyridin-1-yl]propane-1-sulfonate (PPS), and sodium dodecyl sulfate (SDS) were investigated for their applicability to membrane proteome analysis. It is shown that RapiGest is a preferred reagent for handling membrane proteomes of Escherichia coli and MCF7 cells for liquid chromatography tandem mass spectrometry (LC MS/MS) analysis of tryptic digests. The RapiGest method allowed identification of more peptides and proteins than the SDS and PPS methods and there was no apparent bias for the type of peptides and proteins identified by the RapiGest and SDS methods, while a slightly higher proportion of hydrophilic peptides and proteins were identified by the PPS method. The performance of the SDS and PPS methods is similar in terms of the numbers of peptides and proteins identified. Since the SDS method required the removal of SDS using a technique such as strong-cation exchange (SCX), we further investigated the effect of SCX on sample loss through analyzing the digest of an enriched E. coli membrane fraction as well as a standard protein, bovine serum albumin (BSA). The results showed that extensive sample loss (as much as 62%) was encountered during the SCX cleaning step. We then applied the RapiGest method in combination with two-dimensional LC MS/MS to characterize the E. coli membrane proteome. In total, 1626 unique proteins (5799 unique peptides) were identified with a peptide false discovery rate of 2.4%. About 60% of the identified proteins with known cellular locations were found to be membrane proteins. Among them, about 75% were integral membrane proteins. This work represents one of the most comprehensive profiles of E. coli membrane proteome generated by a proteomic technique.  相似文献   

12.
采用改进的圆盘凝胶电泳提取人血清中低分子量蛋白质, 去除了血清中分子量大于3×104的蛋白质, 将提取的低分子量蛋白质热变性后直接在溶液中酶解成肽, 经液相色谱-质谱分析, 并进行Mascot数据库检索, 确认出人血清中97种蛋白质.  相似文献   

13.
Covalent modification of peptides and proteins with compounds containing stable isotopes (isotope tagging) has become an essential tool to detect dynamic changes in the proteome following external or internal influence; however, using terminal amino groups for global isotope labelling of tryptic peptides is challenged by the similar reactivity of the amino groups of lysine residues. We describe a new quantitative method based on selective tagging of the terminal amino groups of tryptic peptides with pentafluorophenyl esters containing stable isotopes. The labelled peptides were resolved by two-dimensional nanoflow liquid chromatography on weak anion-exchange and reversed-phase columns and then identified and quantified by tandem mass spectrometry. The method was applied to compare the proteomes of plasma membranes from proliferating and differentiated human colorectal adenocarcinoma (Caco-2) cells and endosomes purified from the livers of rats stimulated with insulin and epidermal growth factor. The comparison of the results obtained by isotope tagging and biochemical assays demonstrate that global isotope tagging with pentafluorophenyl esters allows accurate quantification of complex protein samples.  相似文献   

14.
Zymogen granule (ZG) constituents play important roles in pancreatic injury and disease. In previous studies, proteomic analyses with rat zymogen granules were separated by two‐dimensional gel electrophoresis or one‐dimensional SDS–PAGE, followed by in‐gel tryptic digestion. In order to overcome the disadvantage of in‐gel digestion and to carry out further in‐depth proteomic analysis of the zymogen granules, in this study, by combining a filter‐aided sample preparation method and fully automated 2D‐LC‐MS/MS technique, 800 ZG proteins were identified with at least two unique peptides for each protein, 75% of which have not been previously reported. The identified proteins revealed broad diversity in protein identity and function. This is the largest dataset of ZG proteome, and also the first dataset of the mouse ZG proteome, which may help elucidate on the molecular architecture of ZGs and their functions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Serum low-molecular weight (LMW) proteins potentially contain useful biological information and their identification can be used to discover novel potential biomarkers. Given the high complexity of serum samples, in the last years several different prefractionation and enrichment strategies have been developed. In this study three different methods, i.e. hydrogel nanoparticles, Proteominer® peptide ligand affinity beads and Sartorius Vivaspin® centrifugal ultrafiltration device, were compared and evaluated in order to select the best strategy for the enrichment and prefractionation of LMW proteins. A shotgun proteomics approach was adopted, with in-solution proteolytic digestion of the whole protein mixture and determination of the resulting peptides by nanoHPLC coupled with a high-resolution Orbitrap LTQ-XL mass spectrometer. Data analysis, focusing on the LMW proteome (MW ≤ 40 kDa), has shown that the hydrogel nanoparticles performed better in enriching the LMW protein profiles, with 115 proteins identified against 93 and 95 for Proteominer® beads and Sartorius Vivaspin® device, respectively.  相似文献   

16.
Quantitative assessment of human serum high-abundance protein depletion   总被引:1,自引:0,他引:1  
The aim of this study is to quantify the effectivity of the depletion of human high-abundance serum and plasma proteins for improved protein identification and disease marker candidate discovery and to assess the risk of concomitant removal of relevant marker proteins. 2-DE and bottom-up shotgun MS combining 2-D capillary chromatography with MS/MS were applied in parallel for the analysis of fractions resulting from the depletion procedure. For many proteins the factors of enrichment by the depletion were obvious allowing their enhanced detection and identification upon high-abundance protein depletion. Nano-liquid chromatography linked MS allowed the efficient identification of several low-abundant proteins that were not identified on the 2-DE gels. Resolving the fractions that were eluted from the matrix upon depletion indicated unspecific binding of disease relevant proteins in plasma samples from acute myocardial infarction patients. The unspecific binding to the depletion matrix of inflammatory markers spiked into the serum was found to depend on the type of capturing agent used. Polyclonal avian antibodies (IgY) displayed the least unspecific binding due to the high immunogenicity of mammalian proteins in avian hosts.  相似文献   

17.
Proteins that are important indicators of physiological or pathological states may contribute to the early diagnosis of disease, which may provide a basis for identifying the underlying mechanism of disease development. Serum, contains an abundance of proteins, offers an easy and inexpensive approach for disease detection and possesses a high potential to revolutionize the diagnostics. These differentially expressed proteins in serum have become an important role to monitoring the state for disease. Availability of emerging proteomic techniques gives optimism that serum can eventually be placed as a biomedium for clinical diagnostics. Advancements have benefited biomarker research to the point where serum is now recognized as an excellent diagnostic medium for the detection of disease. Comprehensive proteome of human serum fluid with high accuracy and availability has the potential to open new doors for disease biomarker discovery and for disease diagnostics, providing insights useful for future study. Thus, this review presents an overview of the value of serum as a credible diagnostic tool, and we aim to summarize the proteomic technologies currently used for global analysis of serum proteins and to elaborate on the application of serum proteomics to the discovery of disease biomarkers, and discuss some of the critical challenges and perspectives for this emerging field.  相似文献   

18.
A two-dimensional database of rat brain proteins was constructed. Brain samples from newborn animals were analyzed by two-dimensional electrophoresis and the proteins were identified by matrix-assisted laser desorption/ionization mass spectrometry. The database comprises 210 different proteins, the majority of which are structural components, heat shock proteins and enzymes with various catalytic activities. Several minor differences in the expression level were detected, mainly of quantitative nature, which most likely represent allelic differences. The map may be useful in studies of neurological disorders in animal models of human diseases.  相似文献   

19.
Immunization with complex mixtures, like the human plasma resulted in the generation of cloned mAb libraries (PlasmaScan? and QuantiPlasma? libraries, with >1000 individual mAbs) reacting with a nonredundant set of antigenic epitopes. mAb proteomics refers to quasi‐hypothesis‐free profiling of plasma samples with nascent or cloned mAb libraries for the discovery of disease‐specific biomarkers. Once mAbs with biomarker potential have been identified, the next task is the determination of cognate antigens recognized by the respective mAbs. To determine the cognate protein antigen corresponding to each individual mAbs in the cloned mAb libraries, we have separated human plasma by consecutive steps of desalting and various chromatography procedures. The process resulted in 783 fractions, which we termed “Analyte Library” (AL). The AL represents the human plasma proteome in relatively low‐protein complexity fractions. Here, to determine the utility of the AL, we selected ten plasma proteins and checked for their presence in the fractions. Among the ten cases, the distribution of four selected plasma proteins matched expectations, as these proteins were present only in a few fractions corresponding to their physical, chemical, and biochemical properties. However, in six cases, we observed “smear” ‐like distribution or complete absence of the proteins, suggesting that protein–protein interactions or protein variants may alter the observed plasma distribution profiles. Nevertheless, we conclude that the AL is an efficient, high throughput tool to complement the mAb biomarker discovery process with cognate protein antigen identification for each mAbs.  相似文献   

20.
It was the aim of this study to compare the performance of displacement chromatography with gradient elution chromatography both applied as the cation-exchange separation step for a proteome analysis in a bottom-up approach using multidimensional chromatography for the separation of tryptic peptides prior to their mass spectrometric analysis. The tryptic digest of the human Cohn fraction IV-4 served as a sample. For both chromatography modes commonly used operating parameters were chosen thus ensuring optimal separation results of equal sample amounts for each mode. All resulting fractions were analyzed with an HPLC-chip–LC–MS system. The eluate of the HPLC-chip column was ionized by electrospray ionization (ESI) and analyzed with an ion-trap mass spectrometer. For guaranteeing high confidence concerning the identity of the peptides, the mass spectrometric data were processed by different bioinformatic tools applying stringent criteria. By the displacement approach the total amount of identified proteins (78) was significantly higher than in the gradient mode (58). The results showed that displacement chromatography is a well suited alternative in comparison to gradient elution separation for analysis of proteomes via the bottom-up approach applying multidimensional chromatography, especially in those cases when larger quantities of proteins are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号