首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
The bimetallic [Pt(NH3)4]2[W(CN)8][NO3]·2H2O is characterised by single-crystal X-ray diffraction [S.G.P21/m(11), a=8.0418(7), b=19.122(2), c=9.0812(6) Å, Z=2]. All platinum centres have the square-plane D4h geometry with average dimensions Pt(1)–N 2.042(2) and Pt(2)–N 2.037(10) Å. The octacyanotungstate anion has the square-antiprismatic D4d configuration with average dimensions W(1)–C 2.164(13), C–N 1.140(12), W(1)–N 3.303(5) Å. The structure exhibits two different mutual orientations of Pt versus W units resulting in Pt(2)–W(1), W(1)* separations of 4.77(2), 4.55(2)* and Pt(1)–W(1) of 6.331(8) Å. A centrosymmetric structure reveals groups of two distinct columns: the first is formed by intercalated NO3 between parallel [Pt(1)(NH3)4]2+ planes and the second consists of [W(CN)8]3− interlayered by, parallel to square faces of W-antiprisms, [Pt(2)(NH3)4]2+. The structure is stabilised through a three-dimensional hydrogen bond network via nitrogen atoms of cyanide ligands, hydrogen atoms of NH3 ligands, water molecules and oxygen atoms of NO3 counteranions. The vibrational pattern and the range of ν(CN) frequencies attributable to the electronic environment of W(V) and W(IV) are consistent with the ground state Pt(II)↔W(V) charge transfer.  相似文献   

2.
The first Pd/C-mediated Sonogashira coupling of β-chloroacroleins with terminal alkynes is described here. Pd/C–CuI–PPh3 was found to be an efficient catalyst system for this coupling reaction. Using this economic and general process a variety of 4-alkynyl-2H-chromene-3-carbaldehydes and 5-alkynyl-2,3-dihydro benzo[b]oxepine-4-carbaldehydes were prepared in good yields.  相似文献   

3.
Molecules of C12H4F8N2 crystallize in the orthorhombic space group P212121 with cell constants a=9.200(1), b=10.896(1), c=23.178(3) Å and V=2323.4(5) Å3. There are two molecules in the asymmetric unit which have D2 symmetry. However these two molecules have C2 symmetry in central C–C bonds, separately. Intramolecular steric repulsions between F atoms and N–HF hydrogen bonds have very much affected the molecular conformation. The mean dihedral angle between intramolecular phenyl rings is 119.2(1)°. The N–C bonds have lengths 1.363(4)–1.407(4) Å with a mean of 1.388 Å. This is shorter than the conventional C–N (1.47(1) Å) bond length due to π-electron delocalizations (F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. II (1987) S1–S19).

The molecular structure of the title compound was also investigated by IR spectroscopy. It was shown that the IR spectra are in agreement with the crystal structure. On the other hand, theoretical and semi-emprical molecular mechanic calculations were carried out to obtain the most probable low-energy conformations by using MM3, PM3 and AM1 programs.  相似文献   


4.
The crystal structure of bis(trifluoroacetato)-(N-methyl-meso-tetraphenylporphyrinato) thallium(III), Tl(N---Me---tpp)(CF3CO2)2 (2), was established and the coordination sphere around the Tl3+ ion is described as 4:3 tetragonal base–trigonal base piano stool seven-coordinate geometry in which the two cis CF3CO2 − groups occupy two apical sites. The plane of the three pyrrole nitrogen atoms [i.e. N(2), N(3) and N(4)] strongly bonded to Tl3+ is adopted as the reference plane 3N. The pyrrole N(1) ring bearing the methyl group [i.e. C(45)H3] is the most deviated one from the 3N plane making a dihedral angle of 23.3° whereas smaller angles of 9.9, 2.7 and 4.7° occur with pyrroles N(2), N(3), and N(4), respectively. Because of the larger size of the thallium(III) ion, Tl is considerably out of the 3N plane; its displacement of 1.02 Å is in the same direction as that of the two apical CF3CO2 − ligands. The intermolecular trifluoroacetate exchange process for 2 in CD2Cl2 solvent is examined through 19F and 13C NMR temperature-dependent measurements. In the slow-exchange region, the CF3 and carbonyl (CO) carbons of the CF3CO2 − groups in 2 are separately located at δ 114.3 [1J(C–F)=290 Hz, 3J(Tl–C)=411 Hz] and 155.1 [2J(C–F)=37 Hz, 2J(Tl–C)=204 Hz], respectively, at −106 °C. In the same slow-exchange region, the fluorine atoms of 2, Tl(N---Me---tpp)(CF3CO2)+ and the free CF3CO2 − are located at δ −73.76 [4J(Tl–F)=44 Hz], −73.30 [4J(Tl–F)=22 Hz], and −76.15 ppm at −97 °C, respectively.  相似文献   

5.
Benzo[b]thiophene-2(3H)one has been prepared from 2-t-butoxybenzo[b]thiophene by dealkylation. Alkylation of sodium, thallium and tetrabutylammonium salts of benzo[b]thiophene-2(3H)one produces both C- and O-alkylation along with products due to ring-opening. At elevated temperatures benzo[b]thiophene-2(3H)one reacts with HMPA (hexamethylphosphorictriamide) to give 2-dimethylaminobenzo[b]thiophene. Other 2-aminobenzo[b]thiophenes are produced by refluxing benzo[b]thiophene-2(3H)one in HMPA in the presence of excess of the corresponding amine.  相似文献   

6.
Triphenyltelluronium hexachloroplatinate (1), hexachloroiridate (2), tetrachloroaurate (3), and tetrachloroplatinate (4) were prepared from Ph3TeCl and potassium salts of the corresponding anions. Upon recrystallization of 4 from concentrated nitric acid, K2[PtCl6] and (Ph3Te)(NO3)·HNO3 (5) were obtained. The crystal structures of 1–3 and 5 are reported. Compounds 1 and 2 are isostructural. They are triclinic, P , Z=2 (the asymmetric unit contains two formula units). Compound 1: a=10.7535(2), b=17.2060(1), c=21.4700(3) Å, =78.9731(7), β=77.8650(4), γ=78.8369(4)°. Compound 2: a=10.7484(2), b=17.1955(2), c=21.4744(2) Å, =78.834(1), β=77.649(1), γ=78.781(1)°. Compound 3 is monoclinic, P21/c, Z=4, a=8.432(2), b=14.037(3), c=17.306(3) Å, β=93.70(3)°. Compound 5 is monoclinic. P21/n, Z=4, a=9.572(2), b=14.050(3), c=13.556(3) Å, β=90.76(3)°. The primary bonding in the Ph3Te+ cation in each salt is a trigonal AX3E pyramid with Te---C bond lengths in the range 2.095(8)–2.14(2) Å and the bond angles 94.1(6)–100.9(5)°. The weak TeCl (1–3) and TeO (5) secondary interactions expand the coordination sphere. In 1 and 2 the cation shows a trigonal bipyramidal AX3YE coordination with one primary Te---C bond and the shortest secondary TeCl contact in axial positions and the two other Te---C bonds and the lone-pair in equatorial positions. The cation in 3 shows a distorted octahedral AX3Y3E environment and that in 5 is a more complex AX3Y3Y′2 arrangement. In both latter salts the structure is a complicated three-dimensional network of cations and anions.  相似文献   

7.
The compound, [chloro{2(1H)-pyridinethione-S}{tris(pyridin-2-ylthiolato)methyl-C,N,N′,N″]}nickel(II)], [Ni(TPTM)(SPyH)Cl], was isolated from the reaction between NiCl2 · 6H2O and tris(pyridin-2-ylthiolato)methane in aqueous EtOH. X-ray crystallography at 120 K revealed an octahedral arrangement about Ni with a tetradentate tris(pyridin-2-ylthio)methyl-C,N,N,N ligand, a monodentate 2(1H)-pyridinethione-S ligand and a chloride. The 2(1H)-pyridinethione-S ligand was derived from tris(pyridin-2-ylthio)methane probably via an acid catalysed hydrolysis reaction. Intramolecular N–H–Cl and C–H–Cl interactions help to cement the molecular structure. Weak C–H–Cl and C–H–S hydrogen bonding interactions link molecules of [Ni(TPTM)(SPyH)Cl] into a 3D array. EPR and UV spectra, and Hartree–Fock theoretical calculations are reported.  相似文献   

8.
A number of isomeric N-benzylbenzalimine palladium(II) complexes of the type [P ·CH2Ph]2 (with C=N endo to the palladocycle) and [P =C(CH3Ph]2 (with C=N exo to the palladocycle), have been prepared and charcterised by 1H and 13C NMR methods. The crystal structures of two analogous monomeric acac complexes, synthesized independently by oxidative addition of o-BrC6H4CH2N=CH · Ph to Ph to Pd(dibenzylideneacetone)2 have also been determined. These are [P · CH2Ph)] (15a) and [P =CHPh)] (20a). Crystals of 15a are monoclinic, space group P21/a with Z = 4 in a cell of dimensions a 10.286(2), b 11.902(3), c 13.895(5) Å, β 93.52(2)° while 20a is monoclinic, space group P21/c with Z = 8 and a 10.353(3), b 20.600(5), c 16.545(7) Å, β 92.14(3)°. The structures 15a and 20a were refined to residuals R = 0.041 and 0.055 for 1661 and 2525 observed reflections respectively.  相似文献   

9.
The details of weak C–Hπ interactions that control several inter and intramolecular structures have been studied experimentally and theoretically for the 1:1 C2H2–CHCl3 adduct. The adduct was generated by depositing acetylene and chloroform in an argon matrix and a 1:1 complex of these species was identified using infrared spectroscopy. Formation of the adduct was evidenced by shifts in the vibrational frequencies compared to C2H2 and CHCl3 species. The molecular structure, vibrational frequencies and stabilization energies of the complex were predicted at the MP2/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels. Both the computational and experimental data indicate that the C2H2–CHCl3 complex has a weak hydrogen bond involving a C–Hπ interaction, where the C2H2 acts as a proton acceptor and the CHCl3 as the proton donor. In addition, there also appears to be a secondary interaction between one of the chlorine atoms of CHCl3 and a hydrogen in C2H2. The combination of the C–Hπ interaction and the secondary ClH interaction determines the structure and the energetics of the C2H2–CHCl3 complex. In addition to the vibrational assignments for the C2H2–CHCl3 complex we have also observed and assigned features owing to the proton accepting C2H2 submolecule in the acetylene dimer.  相似文献   

10.
Two novel hydrogen maleato (HL) bridged Cu(II) complexes 1[Cu(phen)Cl(HL)2/2] 1 and 1[Cu(phen)(NO3)(HL)2/2] 2 were obtained from reactions of 1,10-phenanthroline, maleic acid with CuCl2·2H2O and Cu(NO3)2·3H2O, respectively, in CH3OH/H2O (1:1 v/v) at pH=2.0 and the crystal structures were determined by single crystal X-ray diffraction methods. Both complexes crystallize isostructurally in the monoclinic space group P21/n with cell dimensions: 1 a=8.639(2) Å, b=15.614(3) Å, c=11.326(2) Å, β=94.67(3)°, Z=4, Dcalc=1.720 g/cm3 and 2 a=8.544(1) Å, b=15.517(2) Å, c=12.160(1) Å, β=90.84(8)°, Z=4, Dcalc=1.734 g/cm3. In both complexes, the square pyramidally coordinated Cu atoms are bridged by hydrogen maleato ligands into 1D chains with the coordinating phen ligands parallel on one side. Interdigitation of the chelating phen ligands of two neighbouring chains via π–π stacking interactions forms supramolecular double chains, which are then arranged in the crystal structures according to pseudo 1D close packing patterns. Both complexes exhibit similar paramagnetic behavior obeying Curie–Weiss laws χm(T−θ)=0.414 cm3 mol−1 K with the Weiss constants θ=−1.45, −1.0 K for 1 and 2, respectively.  相似文献   

11.
The Schiff base compound, N-N′-bis(4-methoxybenzylidene)ethylenediamine (C18H20N2O2) has been synthesized and its crystal structure has been investigated by X-ray analysis and PM3 method. The compound crystallizes in monoclinic space group P21/n with a=10.190(1), b=7.954(1), c=10.636(1) Å, β=111.68(1)°, V=801.1(1) Å3, Z=2 and Dcal=1.229 Mgm−3. The title structure was solved by direct methods and refined to R=0.056 for 2414 reflections [I>3.0σ(I)] by full-matrix anisotropic least-squares methods. The energy profile of the compound was calculated by PM3 method as a function of θ[N1′–C9′–C9–N1]. The most stable molecular structure of the title compound is the anti conformation, which is different in energy by 5.0 and 1.0 kcal mol−1 from the eclipsed conformation I and gauche conformations, (III and V), respectively.  相似文献   

12.
The complex W(NPh)Cl2[o-(NSiMe3)2C6H4] 3 was synthesized from PhN = WCl4 · OEt2 and N,N′-(Li2[o-(NSiMe3)2C6H4] and reacts with Lewis bases to form the adducts W(NPh)Cl2[o-(NSiMe3)2C6H4](L) (L = PMe3, THF, 3-picoline, tBuNC, MeCN) 4a–e. Crystals of 4a are triclinic, space group P1¯, with a = 9.562(1), b = 10.277(1), c = 14.920(2) Å, = 82.15(1), β = 80.18(1), γ = 80.41(1)°, and Z = 2. The structure was solved by the heavy atom method and refined to R = 0.0408 for 4224 observed (I > 2σ(I)) reflections. The dialkyl complexes W(NPh)R2[o-(NSiMe3)2C6H4] (R = Me, Et, CH2Ph, CH2CMe3, CH2CMe2Ph) 5–9 are formed through subsequent reactions of 3 with the corresponding Grignard reagent. Crystals of complex 5 are monoclinic, space group P2(1)/n, with a = 10.3545(2), b = 17.9669(1), c = 13.3168(1) Å, β = 103.826(1)°, and Z = 4. The structure of complex 5 was solved by direct methods in SHELXTL5 and refined to R = 0.0247 for 4572 observed reflections. Compound 5 has a square pyramidal geometry in which the imido ligand occupies the apical position and reacts with PMe3 to form the adduct W(NPh)Me2[o-(NSiMe3)2C6H4](PMe3) 5a. Crystals of complex 5a are monoclinic, space group C2/m, with a = 13.5336(1), b = 14.4291(1), c = 15.3785(1) Å, β = 110.365(1)°, and Z = 4. The structure of compound 5a was solved by direct methods in shelxtl5 and refined to R = 0.0272 for 3057 observed reflections. Crystals of the bis-neopentyl complex 8 are monoclinic, space group P2(1)/n, with a = 10.6992(4), b = 18.3144(7), c = 16.0726(6) Å, β = 92.042(1)°, and Z = 4. The structure of 8 was solved by direct methods in shelxtl5 and refined to R = 0.0261 for 5881 observed reflections. Complex 8 has a trigonal bipyramidal geometry with both neopentyl groups and one amido nitrogen in the equatorial plane.  相似文献   

13.
The molecular structure and conformational stability of allylisocyanate (CH2CHCH2NCO) molecule was studied using the ab initio and DFT methods. The geometries of possible conformers, C-gauche (δ=120°, θ=0°) (δ=C=C–C–N and θ=C–C–N=C) and C-cis N-trans (δ=0° and θ=180°) were optimized employing HF/6-31G*, MP2/6-31G* levels of theory of ab initio and BLYP, B3LYP, BPW91 and B3PW91 methods of DFT implementing the atomic basis set 6-311+G(d,p). The structural and physical parameters of the above conformers were discussed with the experimental and theoretical values of the related molecules, methylisocyanate and 3-fluoropropene. It has been found that the N=C=O bond angle is not linear as the experimental result for both the conformers and the theoretical bond angle is 173°. The rotational potential energy surfaces have been performed at the HF/6-31G*, and MP2/6-31G* levels of theory. The Fourier decomposition potentials were analysed at the HF/6-31G*, and MP2/6-31G* levels of theory. The HF/6-31G* level of theory predicted that the C-gauche conformer is more stable than the C-cis N-trans conformer by 0.41 kJ/mol, but the MP2 and DFT methods predicted the C-cis N-trans conformer is found to be more stable than the C-gauche conformer. The calculated chemical hardness value at the HF/6-31G* level of theory predicted the C-cis N-trans form is more stable than C-gauche form, whereas the chemical hardness value at the MP2/6-31G* level of theory favours the slight preference towards the C-gauge conformer.  相似文献   

14.
Unsaturated fatty acids [C8H17CH=CH(CH2)nCO2H] (n=7, 11) acids are cleanly dihydroxylated by hydrogen peroxide in the presence of catalytic amounts of H2WO4. Under molecular oxygen, in the presence of catalytic amounts of N-hydroxyphthalimide and Co(acac)3, the diols resulting from erucic (n=11) and oleic (n=7) acid undergo C–C cleavage.  相似文献   

15.
The synthesis and characterisation of Co(III) complexes derived from a condensation reaction with a central or terminal nitrogen of a dien ligand and the -carbon of a range of substituted bis(pyridin-2-yl)methane ligands are described. Aerial oxidation of bpm {bis(pyridin-2-yl)methane with Co(II)/dien or direct reaction with Co(dien)Cl3 provided in low yield a single C–N condensation product 1 (at the primary terminal NH2) after the pyridyl –CH2– is formally oxidised to –CH+–. The methyl substituted ligand bpe {1,1-bis(pyridin-2-yl)ethane} behaves likewise, except both terminal (prim) and central (sec) amines condense to yield isomeric products 2 and 3. Two of these three materials have been characterised by single crystal X-ray crystallography. The corresponding reactions for the bis(pyridyl) ligand bpk {bis(pyridin-2-yl)ketone} provided C–N condensation products without the requirement for oxidation at the -C center; two carbinolamine complexes in different geometrical configurations resulted, mer-anti-[Co(dienbpc)Cl]ZnCl4, 5, and unsym-fac-[Co(dienbpc)Cl]ZnCl4, 6, {dienbpc=[2-(2-aminoethylamino)-ethylamino]-di-pyridin-2-yl-methanol}. In addition, a novel complex, [Co(bpk)(bpd-OH)Cl]ZnCl4, 4, in which one bidentate N, N-bonded bpk ligand and one tridentate N, O, N-bonded bpd (the diol from bpk+OH) were coordinated, was obtained via the Co(II)/O2 synthetic route. When the bpc ligand (bpc=bis(pyridin-2-yl)methanol) was employed directly as a reagent along with dien, no condensation reactions were observed, but rather a single isomeric complex [Co(dien)(bpc)]Cl.ZnCl4, 7, in which the ligand bpc acted as a N,N,O-bonded tridentate ligand rather than as a N,N-bidentate ligand was isolated. 13C, 1D and 2D 1H NMR studies are reported for all the complexes; they establish the structures unambiguously.  相似文献   

16.
Polarised IR and Raman spectra for KH2PO3 single crystal samples were measured at room temperature. Additionally, the IR spectra for the Xb(Z) sample were also measured at low temperatures (300–14 K). The spectra are discussed on the basis of oriented gas model and group theory. The stretching νOH vibrations of the hydrogen bonds with the OO distances of 2.547 and 2.529 Å give characteristic broad ABC-type bands in the IR (polarised parallel to the X and to the b(Z) directions) and Raman (xx, xz and yx) spectra. The Davydov-type (correlation field or factor group) splitting is not observed for the νOH modes. The presence of two independent hydrogen bonds in the crystal is manifested by splitting of the C band into two (C′, C″) components and by the different frequencies of the out-of-plane bending γOH vibrations. The in-plane bending modes δOH are strongly mixed/coupled with the stretching vibrations of the PO3 groups.

The C bands (C′ and C″) change into quite sharp bands on lowering of the temperature. Various simplified models for internal vibrations of the phosphite anions are applied for finding a correlation between the crystal structure and polarised vibrational spectra. The stretching vibrations of the νPH groups manifest their unequivalence in two symmetry-independent hydrogenphosphite anions.  相似文献   


17.
The X-ray structure of tetraethylammonium hydrogenselenate, [N(C2H5)4]HSeO4, was determined at room temperature. The crystal belongs to the P space group of triclinic system, Z=2, a=8.290(2), b=9.073(2), c=9.517(2) Å, =76.75(3), β=74.31(3) and γ=63.92(3)°. The hydrogenselenate anions are joined into cyclic dimers by two identical (equivalent by Ci) strong hydrogen bonds O(2)–H(02)O(1a); the O(2)O(1a) distance equals 2.611(5) Å. Powder IR and Raman spectra are discussed with respect to the crystal structure. The DSC reveals two phase transitions at 328 and 358 K.  相似文献   

18.
Fluoro-substituted 3-cyano-2-methyl-benzo[b]furans and ethyl 2-methyl-benzo[b]furan-3-carboxylates are conveniently prepared in a single step in good yield by the microwave induced tandem intramolecular Wittig and Claisen rearrangement reactions of the corresponding [(aryloxyacetyl) (cyano) methylene] triphenylphosphorane and [(aryloxyacetyl) (ethoxycarbonyl) methylene] triphenylphosphoranes, respectively.  相似文献   

19.
Two nickel (imidazole) complexes, Ni(im)6Cl2·4H2O (1) and Ni(im)6(NO3)2 (2) (im=imidazole) have been synthesized and characterized by elemental analysis, IR, UV, TG and single crystal X-ray diffraction. 1 crystallizes in the triclinic space group P-1 with a=8.800(6) Å, b=9.081(6) Å, c=10.565(7) Å, =75.058(9)°, β=83.143(8)°, γ=61.722(8)°, V=718.3(8) Å3, Z=1 and R1 (wR2)=0.0469 (0.1497). 2 crystallizes in the trigonal space group R-3 with a=12.370(6) Å, b=12.370(6) Å, c=14.782(14) Å, =90.00°, β=90.00°, γ=120.00°, V=1959(2) Å3, Z=3 and R1 (wR2)=0.0358 (0.0955). 1 and 2 exhibit different supramolecular network due to their different counter anions and different hydrogen bonding connection. In compound 1, [Ni(im)6]2+ cation and counter anions Cl alternatively array in an ABAB fashion via N–HCl hydrogen bonding. In compound 2, the plane of each NO32− is almost parallel and each NO32− connect three different [Ni(im)6]2+ cations via N–HO hydrogen bonding.  相似文献   

20.
A highly conjugative polyheterocyclic compound, tetraazathiapentalene fused with pyridine rings, was synthesized by reacting 2-aminopyridine with carbon disulfide. The single crystal X-ray determination reveals that the molecule crystallizes in monoclinic space group C2/c, with the following unit cell dimensions: a=11.062(2), b=9.030(1), c=20.898(5) Å, β=102.98(1)°, V=2034.00(3) Å3, Z=8, and that a hypervalent N–S–N bond exists in the molecule. Ab initio calculations predict its IR and 1H NMR spectra that are coincident with the experimental ones and reveal the bonding nature of the hypervalent N–S–N bond and the electronic structure of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号