首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fourteen azodyes containing one to five acidic groups were separated by capillary zone electrophoresis (CZE). The effects of the pH and beta-cyclodextrin additive to the background electrolyte on the separation of sulphonated azodyes were investigated. The effects of the working conditions significantly differ in non-coated fused silica capillaries and in capillaries coated with polyacrylamide. Splitting of the zones of metal-complex dyes was observed in polyacrylamide coated capillaries and the background electrolyte with 10 mmol/L beta-cyclodextrin, due to the separation of stereoisomeric forms of the dyes, which were separated for the first time using CE. Relations between the structure of the sulphonated azodyes and the electrophoretic mobilities are discussed. Naphthalene mono- to tetrasulphonic acids were used as the standards for the calibration of migration scale of the analysed dyes.  相似文献   

2.
Polyelectrolytes are widely used in capillary electrophoresis as coating agents of silica capillaries to prevent adsorption phenomena and improve the repeatability of peptide and protein analysis. A systematic study of the coating experimental conditions has been carried out to optimize coating stability and performance. The main experimental parameters studied were the type and concentration of polyelectrolytes used in several monolayer and multilayer coatings, the ionic strength of coating and stabilizing solutions, and the procedures used for coating and capillary storage. Electroosmotic flow magnitude, direction and repeatability were used to monitor coating stability. Coating ability to limit adsorption was investigated by monitoring variations of migration times, time-corrected peak areas and separation efficiency of test peptides. Capillary-to-capillary and batch-to-batch reproducibility was also studied. In addition, the separation performance of polyelectrolyte coatings were compared to those obtained with bare silica capillaries.  相似文献   

3.
Bo T  Wiedmer SK  Riekkola ML 《Electrophoresis》2004,25(12):1784-1791
A phospholipid coating with lysozyme as chiral recognition reagent permeated into the phospholipid membrane was developed for the chiral capillary electrophoretic (CE) separation of D- and L-tryptophan. As a kind of carriers, coated as phospholipid membranes onto the inner wall of a fused-silica capillary, liposomes are able to interact with basic proteins such as lysozyme, which may reside on the surface of the phospholipid membrane or permeate into the middle of the membrane. The interaction results in strong immobilization of lysozyme in the capillary. Coatings prepared with liposomes alone did not allow stable immobilization of lysozyme into the phospholipid membranes, as seen from the poor repeatability of the chiral separation. When 1-(4-iodobutyl)-1,4-dimethylpiperazin-1-ium iodide (M1C4) was applied as a first coating layer in the capillary, the electroosmotic flow (EOF) was effectively suppressed, the phospholipid coating was stabilized, and the lysozyme immobilization was much improved. The liposome composition, the running buffer, and the capillary inner diameter all affected the chiral separation of D- and L-tryptophan. Coating with 4 mM M1C4 and then 1 mM phosphatidylcholine (PC)/phosphatidylserine (PS) (80:20 mol%), with 20 mM (ionic strength) Tris at pH 7.4 as the running buffer, resulted in optimal chiral separation with good separation efficiency and resolution. Since lysozyme was strongly permeated into the membrane of the phospholipids on the capillary surface, the chiral separation of D- and L-tryptophan was achieved without lysozyme in the running buffer. The effects of different coating procedures and separation conditions on separation were evaluated, and the M1C4-liposome and liposome-lysozyme interactions were elucidated. The usefulness of protein immobilized into phospholipid membranes as a chiral selector in CE is demonstrated for the first time.  相似文献   

4.
Fillet M  Servais AC  Crommen J 《Electrophoresis》2003,24(10):1499-1507
This review gives a survey of the approaches employed to obtain, enhance and tune selectivity in nonaqueous capillary electrophoresis (NACE). Recent developments in NACE are described and the effects of background electrolyte composition and addition of selectors on separation selectivity are discussed. The use of one organic solvent, a mixture of several organic solvents or the use of additives to tune separation selectivity in NACE is presented and a list of relevant applications is included.  相似文献   

5.
Many cellular functions are regulated through protein isoforms. Changes in the expression level or regulatory dysfunctions of isoforms often lead to developmental or pathological disorders. Isoforms are traditionally analyzed using techniques such as gel- or capillary-based isoelectric focusing. However, with proper electro-osmotic flow (EOF) control, isoforms with small pI differences can also be analyzed using capillary zone electrophoresis (CZE). Here we demonstrate the ability to quickly resolve isoforms of three model proteins (bovine serum albumin, transferrin, alpha1-antitrypsin) in capillaries coated with novel dynamic coatings. The coatings allow reproducible EOF modulation in the cathodal direction to a level of 10(-9) m2V(-1)s(-1). They also appear to inhibit protein adsorption to the capillary wall, making the isoform separations highly reproducible both in peak areas and apparent mobility. Isoforms of transferrin and alpha1-antitrypsin have been implicated in several human diseases. By coupling the CZE isoform separation with standard affinity capture assays, it may be possible to develop a cost-effective analytical platform for clinical diagnostics.  相似文献   

6.
7.
王丙香  柴微波  唐安娜  丁国生 《色谱》2015,33(4):334-341
手性是自然界的本质属性之一。手性分离分析技术对生命科学、环境科学、生物工程和药物工程等许多学科都具有十分重要的意义。当前,对不同种类手性化合物进行拆分已成为毛细管电泳技术最具特色的研究和应用领域之一。然而,被分析物(或拆分剂)在毛细管内壁的吸附是毛细管电泳手性分离中的常见问题。涂层技术就是采用不同的方法对毛细管内壁进行改性,是抑制非特异性吸附、提高分离效率及分离重现性最简便和最有效的方法。本文主要综述了近十几年来各种涂层技术在毛细管电泳手性分离领域的应用现状,并对毛细管涂层技术今后的发展进行了展望。  相似文献   

8.
Capillary zone electrophoresis (CZE) with cyclodextrin (CD) in the polyacrylamide-coated capillary was used to study metallothionein (MT) forms in the horse kidney preparation produced commercially by Sigma. It is known that CDs form complexes with hydrophobic amino acids. The results show that the presence of CD improves the separability of the various MT forms, including the MT-IA and the MT-IB forms, metallothionein aggregates, as well as the so far unidentified a and b forms. This was true both below and above the isoelectric points (pIs), although the migration times were somewhat longer at increasing CD concentrations for runs at constant voltage than with constant current.  相似文献   

9.
In this work, a capillary zone electrophoretic methodology using UV indirect detection (224 nm) for the analysis of fatty acids (FAs) in saponified oils is proposed. The electrolyte consisted of a 5 mmol l(-1) phosphate buffer, pH 7. containing 4 mmol l(-1) sodium dodecylbenzenesulfonate (SDBS) as chromophore, 4 mmol l(-1) dimethyl-beta-cyclodextrin and 45% acetonitrile (ACN). The composition of the electrolyte was optimized by a 2(3) factorial design with triplicate at the central point. The design established practical concentration boundaries for SDBS and ACN. In a defined concentration range of 2-4 l(-1), SDBS can certainly be used as a chromophore for indirect detection without imparting excessive baseline noise. For ACN, a suitable interval of 45-55% was found to enhance FAs solubilization without overflowing the system with bubble formation and current interruption. Additionally, the design revealed the importance of dimethyl-beta-cyclodextrin in the resolution of difficult pairs and its function as a solubilizing agent for long chain FAs. At the optimized conditions, nine FAs from C10 to C20, including mono- di- and tri-unsaturated C18 fatty acids were baseline separated in less than 10 min. The proposed method was applied to the separation of FAs in edible oils and polyunsaturated fatty acid enriched margarine. Additionally, spectral monitoring at 206 nm was used to confirm peak identity in the samples.  相似文献   

10.
A brush-like copolymer consisting of poly(ethylene glycol) methyl ether methacrylate and N,N-dimethylacrylamide (PEGMA-DMA) was synthesized and used as a novel static physically adsorbed coating for protein separation by capillary electrophoresis for the first time, in order to stabilize electroosmotic flow (EOF) and suppress adsorption of proteins onto the capillary wall. Very stable and low EOF was obtained in PEGMA-DMA-coated capillary at pH 2.2-7.8. The effects of molar ratio of PEGMA to DMA, copolymer molecular mass, and pH on the separation of basic proteins were discussed. A comparative study of bare capillary with PEGMA-DMA-coated capillary for protein separation was also performed. The basic proteins could be well separated in PEGMA-DMA-coated capillary over the investigated pH range of 2.8-6.8 with good repeatability and high separation efficiency because the copolymer coating combines good protein-resistant property of PEG side chains with excellent coating ability of PDMA-contained backbone. Finally, the coating was successfully applied to the fast separation of other protein samples, such as protein mixture and egg white, which reveals that it is a potential coating for further proteomics analysis.  相似文献   

11.
Capillary electrophoresis (CE) techniques have been successfully applied to the separation of metallothionein (MT) isoforms and have proved to be rapid, practical and economical. Study of a variety of different electrolytes and capillaries has shown that electrolyte buffer composition and capillary wall surface modifications can have considerable influence on isoform separation and resolution. Ionic surfactants such as sodium dodecyl sulphate (SDS) form micelles at elevated concentrations and the partitioning of molecules between the hydrophobic micelle phase and the aqueous phase and their resulting migration in an electric field is the basis of the technique known as micellar electrokinetic capillary chromatography (MECC). In the present work, we have used sheep and rabbit MT to optimise MECC conditions for analysis of MT isoforms. Capillaries of 57 cm gave much better separations than shorter columns although analysis times were increased to about 12 min. Changing the buffer and SDS concentration or the pH affected the selectivity of isoform separation and up to 5 isoforms in sheep MT and 6 in rabbit MT were completely or partially resolved. Comparing different diameter capillaries we conclude that 25 μm I.D. columns give better separations than 50 or 75 μm I.D. columns although sensitivity is reduced by a factor of about 3 and 5, respectively. Using our MECC conditions, columns coated with C1 or C18 hydrophobic material were not found to be useful in improving MT separation or resolution although further evaluation of these columns is in progress. Analysis of sheep liver extracts using optimised conditions showed the expression of at least 4 MT isoforms in response to Zn injection and 3 of these forms were evident in extracts from untreated sheep. We therefore conclude that MECC is a suitable method for MT isoform analysis.  相似文献   

12.
We present the polymer poly-N-hydroxyethylacrylamide (PHEA) (polyDuramide) as a novel, hydrophilic, adsorbed capillary coating for electrophoretic protein analysis. Preparation of the PHEA coating requires a simple and fast (30 min) protocol that can be easily automated in capillary electrophoresis instruments. Over the pH range of 3-8.4, the PHEA coating is shown to reduce electroosmotic flow (EOF) by about 2 orders of magnitude compared to the bare silica capillary. In a systematic comparative study, the adsorbed PHEA coating exhibited minimal interactions with both acidic and basic proteins, providing efficient protein separations with excellent reproducibility on par with a covalent polyacrylamide coating. Hydrophobic interactions between proteins and a relatively hydrophobic poly-N,N-dimethylacrylamide (PDMA) adsorbed coating, on the other hand, adversely affected separation reproducibility and efficiency. Under both acidic and basic buffer conditions, the adsorbed PHEA coating produced an EOF suppression performance comparable to that of covalent polyacrylamide coating and superior to that of adsorbed PDMA coating. The protein separation performance in PHEA-coated capillaries was retained for 275 consecutive protein separation runs at pH 8.4, and for more than 800 runs at pH 4.4. The unique and novel combination of hydrophilicity and adsorptive coating ability of PHEA makes it a suitable wall coating for automated microscale analysis of proteins by capillary array systems.  相似文献   

13.
Chiral separation of cetirizine by capillary electrophoresis   总被引:1,自引:0,他引:1  
Chiral separation of cetirizine, a second-generation H(1)-antagonist, was studied by CD-mediated CE. Several parameters, including pH, CD type, buffer concentration, type of co-ion, applied voltage and temperature, were investigated. The best conditions for chiral separation were obtained using a 75 mM triethanolamine-phosphate buffer (pH 2.5) containing 0.4 mg/mL heptakis(2,3-diacetyl-6-sulfato)-beta-CD and 10% ACN. Online UV detection was performed at 214 nm, a voltage of 20 kV was applied and the capillary was temperature controlled at 25 degrees C by liquid cooling. Hydrodynamic injection was performed for 1 s. The method was validated for the quantification of levocetirizine in tablets and for enantiomeric purity testing of the drug substance. Selectivity, linearity, LOD and LOQ, precision and accuracy were evaluated for both methods. The amount of levocetirizine dihydrochloride in the commercially available tablets was quantified and was found to be within the specification limits of the claimed amount (5 mg). The amount of distomer in levocetirizine drug substance was found to be 0.87 +/- 0.09% w/w, which is in agreement with the certificate of analysis supplied by the company.  相似文献   

14.
15.
Spermine-graft-dextran (Spe-g-Dex) copolymer was synthesized and used as a non-covalent coating for the separation of proteins and neurotransmitters by capillary electrophoresis. The coating was obtained via flushing the capillary with 1.0% Spe-g-Dex copolymer solution for 2 min. Electroosmotic flow (EOF) was strongly suppressed, ranging from −1.60 × 10−9 to 3.65 × 10−9 m2 V−1 s−1. Effect of experimental conditions, such as the copolymer concentration, the concentration and pH of the background electrolyte (BGE), on the Spe-g-Dex coating was investigated. Separation of lysozyme, cytochrome c, ribonuclease A and α-chymotrypsinogen yielded high separation efficiencies ranging from 141 000 to 303 000 plates/m and recoveries from 85.4% to 98.3% at pH 4.0 (284.0 mM sodium acetate–acetic acid buffer, I = 50 mM). Run-to-run repeatabilities and day-to-day, and capillary-to-capillary reproducibilities were all below 1.7%. In addition, Spe-g-Dex coating allowed the successful separation of five neurotransmitters, 5-hydroxytryptamine, dopamine, epinephrine, isoprenaline, dobuamine at pH 4.0 with high separation efficiencies of 290 000–449 000 plates/m.  相似文献   

16.
在分离19种氯代酚的过程中,考察了不同的有机添加剂对其毛细管区带电泳分离的影响,发现除了缓冲溶液的pH值外,缓冲溶液添加剂对氯代酚的电泳分离也有较大影响。这种影响与添加剂和氯代酚形成氢键的能力有关。  相似文献   

17.
This paper describes employing capillary electrophoresis (CE) for the separation of gold colloids in nanometer-size regimes. Adding sodium dodecylsulfate (SDS) surfactant to the running buffer enhances the capability of CE to separate gold nanoparticles. We found that the optimized separation conditions involved SDS (70 mM), 3-cyclohexylamoniuopropanesulfonic acid (CAPS) buffer (10 mM), pH 10.0, and an applied voltage of 20 kV. We propose that the charged surfactants associate onto the surface of the gold nanoparticles and cause a change in the charge-to-size ratio of gold nanoparticle, which is a function of the surface area of nanoparticle and the surfactant concentration of running electrolyte. At high concentrations of the surfactant in the running electrolyte—i.e., when the surface of the gold nanoparticles is fully occupied with SDS—a linear relationship exists between the electrophoretic mobility and nanoparticles having diameters ranging from 5.3 to 38 nm. Based on the results of separating the 5.3 and 19 nm nanoparticles, we estimate that the size resolution (Rs=1.0) is 5.0 nm. The relative standard deviations of the electrophoretic mobilities of the 5.3 and 19 nm gold nanoparticles are 0.97 and 0.54%, respectively.  相似文献   

18.
Ionic substances with melting points close to room temperature are referred to as ionic liquids. Because ionic liquids are environmentally benign and are good solvents for a wide range of both organic and inorganic materials, interest for their potential uses in different chemical processes is increasing. In this paper, a capillary electrophoretic method for the analysis of basic proteins including lysozyme, cytochrome c, trypsinoge, and α-chymotyypsinogen A is reported. The method, in which 1-alkyl-3-methylimidazolium-based ionic liquids are used as the running electrolytes, leads to a surface charge reversal on the capillary wall. The effects of the alkyl group, imidazolium counterion, and the concentration of the ionic liquids were discussed. The optimum buffer system was a 90 mM 1-ethyl-3-methylimidazolium tetrafluoroborate (1E-3MI-TFB) solution. The applied voltage was −15 kV and detection was performed by monitoring absorbance at 240 nm. Baseline separation, high efficiencies, and symmetrical peaks of four proteins were obtained. The R.S.D. values of migration times and peak areas were <0.68 and <3.0%, respectively. The separation mechanism seems to involve association between the imidazolium cations and the proteins.  相似文献   

19.
Yang R  Shi R  Peng S  Zhou D  Liu H  Wang Y 《Electrophoresis》2008,29(7):1460-1466
We present cationized hydroxyethylcellulose (cat-HEC) synthesized in our laboratory as a novel physically adsorbed coating for CE. This capillary coating is simple and easy to obtain as it only requires flushing the capillary with polymer aqueous solution. A comparative study with and without polymers was performed. The adsorbed cat-HEC coating exhibited minimal interactions with basic proteins, providing efficient basic protein separations with excellent reproducibility. Under broad pHs, the amine groups are the main charged groups bringing about a global positive charge on the capillary wall. As a consequence, the cat-HEC coating produced an anodal EOF performance. A comparative study on the use of hydroxyethylcellulose (HEC) and cat-HEC as physically adsorbed coatings for CE are also presented. The separation efficiency and analysis reproducibility proved that the cat-HEC polymer was efficient in suppressing the adsorption of basic proteins onto the silica capillary wall. The long-term stability of the cat-HEC coating in consecutive protein separation runs has demonstrated the suitability of the coating for high-throughput electrophoretic protein separations.  相似文献   

20.
Perfect control of electroosmotic flow (EOF) was achieved by dovetailing successive multiple ionic-polymer layer (SMIL) coated capillaries. The direction and magnitude of the EOF was perfectly controllable over the pH range 2-13. Zone diffusion was not observed, even if the inner wall of the dovetailed capillary was discontinuous, or if the sample zone passed through the connected part of the capillary because the RSDs of migration time, theoretical plates, symmetry factor and S/N of the marker were almost the same when seamless capillary and dovetailed capillary were compared. The dovetailed capillary was applied to cyclodextrin modified capillary zone electrophoresis. The control of the EOF enabled us to control both the resolution and the migration order of the enantiomers. The migration time was also controllable and, therefore, the best condition between separation and migration time could be determined by controlling the EOF. Partial filling affinity electrokinetic chromatography with a protein used as a chiral selector was also studied. The migration of the pseudostationary phase was controllable by EOF, and detection of the solute at 214 nm was possible. Therefore, the EOF-controlled dovetailed capillary has great potential to expand the application of the separation technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号