首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enzymatic synthesis of medium-chain triglycerides in a solvent-free system   总被引:3,自引:0,他引:3  
The synthesis of tricaprylin, tricaprin, trilaurin, and trimyristin in a solvent-freesystem was conducted by mixing a commercial immobilized lipase (Lipozyme IM 20, Novo Nordisk, Bagsvaerd, Denmark) with the organic reactants (glycerol and fatty acids) in a 20-mL batch reactor with constant stirring. In a first set of experiments, the effect of water concentration (0–6%) on the reaction conversion was shown to be negligible. In a second set of experiments, the effects of temperature (70–90°C), fatty acid/glycerol molar ratio (1–5), and enzyme concentration (1–9%[w/w]) on the reaction conversion were determined by the application of a 3×3 experimental design. The reactions were carried out for 26 h and the nonpolar phase was analyzed by gas chromatography (GC). Appreciable levels of medium-chain triglycerides were achieved, except for tricaprylin. For the triglyceride production, higher selectivity was attained under the following conditions: molar ratio of 5, enzyme concentration of 5 or 9% (w/w) and temperatures of 70°C (Tricaprin), 80°C (trilaurin), and 90°C (trimyristin). Statistical analysis indicated that the fatty acid/glycerol molar ratio was the most significant variable affecting the synthesis of triglycerides.  相似文献   

2.
The aim of this study was to produce monolaurin utilizing a commercial immobilized lipase (Lipozyme IM-20; Novo Nordisk, Bagsvaerd, Denmark) through the direct esterification of lauric acid and glycerol in a solvent-free system. The influence of fatty acid/glycerol molar ratio, temperature, and Lipozyme (IM-20) concentration on the molar fraction of monolaurin were determined using an experimental design. The best conditions employed were 55°C, lauric acid/glycerol molar ratio of 1.0, and 3.0% (w/w) enzyme concentration. The final product, obtained after 6 h of reaction, was 45.5% monolaurin, 26.8% dilaurin, 3.1% trilaurin, and 24.6% lauric acid. The reusability of the enzyme was also studied.  相似文献   

3.
The synthesis of monocaprin, monolaurin, and monomyristin in a solvent-free system was conducted by mixing a commercial immobilized lipase with the organic reactants (glycerol and fatty acids) in a 20-mL batch reactor with constant stirring. The effects of temperature, fatty acid/glycerol molar ratio, and enzyme concentration on the reaction conversion were determined. The addition of molecular sieves in the assays of monomyristin synthesis was also evaluated. The reactions were carried out for 5 to 6 h and the nonpolar phase was analyzed by gas chromatography. The best results in terms of selectivity and conversion (defined as the percentage of fatty acid consumed) were achieved when the stoichiometric amount of reagents (molar ratio=1) and 9% (w/w) commercial enzyme were used and the reaction was performed at 60°C. The addition of molecular sieves did not improve the synthesis of monomyristin. Conversions as high as 80%, with monoglycerides being the major products, were attained. After 5 h of reaction, the concentration of monoglyceride was about twice that of diglyceride, and only trace amounts of triglyceride were found. The results illustrate the technical possibility of producing medium chain monoglycerides in a solvent-free medium using a simple batch reactor.  相似文献   

4.
A kinetic study ofChromobacterium viscosum lipase was undertaken, and compared withPseudomonas glumae lipase. Optimum operation conditions were pH 9.0 and 50°C for both enzymes. A substrate specificity study was also developed. Both enzymes showed higher activity on triglycerides with a long chain of fatty acid; the specific activity was always higher for C.viscosum lipase. Stability of both enzymes in aqueous medium at 60°C and pH 9.0 was evaluated. C.viscosum lipase was three times more stable than P.glumae lipase, with at 1/2 value of 0.75 h. In addition, the activity of C.viscosum lipase with substrate concentration was studied with a triolein emulsion. A dependence of the intrinsic characteristics of the emulsion was observed. Therefore, stability ofC. viscosum lipase B with reaction products was assayed in a micellar system. Acid products reduced the specific activity of the enzyme. Glycerol and high buffer concentration were stabilizers of enzyme deactivation. Finally, substrate specificity ofC. viscosum lipase B in a micellar system was developed with tributyrin, tricaprylin, and triolein. Only tributyrin showed an apparent Michaelis-Menten kinetic with Vmax app = 958 U/mg and Kma app = 75.5 mM. Tricaprylin and triolein showed diffusion limitations at low substrate concentration and substrate inhibition at high substrate concentration. Diffusion parameters were calculated for both these substrates. Mass transfer coefficients (k1) were 0.314 Å/min and 1.53 Å/min for tricaprylin and triolein, respectively. Effectiveness factors (η) were 0.536 and 0.768 for tricaprylin and triolein, respectively.  相似文献   

5.
Lipases from Bacillus thermocatenulatus are a member of superfamily of α/β hydrolase, but there are structural differences between them. In this work, we focused on the α5 helix of B. thermocatenulatus lipase (BTL2) which is absent in canonical α/β hydrolase fold. In silico study showed that the α5 helix is a region that causes disorder in BTL2 protein. So, the α5 helix (residues 131 to 150) has been deleted from the B. thermocatenulatus lipase gene (BTL2) and the remain (Δα5-BTL2) has been expressed in Pichia pastoris yeast. The α5 deletion results in increase of enzyme-specific activity in the presence of tributyrin, tricaproin, tricaprylin, tricaprin, trilaurin, and olive oil (C18) substrates by 1.4-, 1.7-, 2.0-, 1.2-, 1.75-, and 1.95-fold, respectively. Also, deletion leads to increase in enzyme activity in different temperatures and pHs, whereas it did not significantly affect on enzyme activity in the presence of organic solvents, metal ions, and detergents.  相似文献   

6.
Esterification of glycerol with conjugated linoleic acid (CLA) was carried out in hexane. Lipase from Rhizomucor miehei provided a high degree of esterification (80%) in 8 h at 50°C when used at 15% (w/w) in a system containing a 1∶2 molar ratio of glycerol to free fatty acids. Esterification levels >80% were obtained in 8 h at 40°C with 15% (w/w) lipase from Candida antarctica at the same molar ratio of reactants. The extent of esterification of CLA was >90% after 4h of reaction at 50°C with a 5% (w/w) loading of either R. miehei or C. antarctica lipase, together with a 1∶1 molar ratio of substrates. Both enzymes incorporated the original CLA as acylglycerol residues in primarily 1,3-diacylglycerol and 1-monoacylglycerol. The CLA-rich acylglycerols can be employed as emulsifiers or as substitutes for natural fats and oils.  相似文献   

7.
Candida rugosa lipase was entrapped in silica sol-gel particles prepared by hydrolysis of methyltrimethoxysilane and assayed by p-nitrophenyl palmitate hydrolysis, as a function of pH and temperature, giving pH optima of 7.8 (free enzyme) and 5.0–8.0 (immobilized enzyme). The optimum temperature for the immobilized enzyme (50–55°C) was 19°C higher than for the free enzyme. Thermal, operational, and storage stability were determined with n-butanol and bytyric acid, giving at 45°C a half-life 2.7 times greater for the immobilized enzyme; storage time was 21 d at room temperature. For ester synthesis, the optimum temperature was 47°C, and high esterification conversions were obtained under repeated batch cycles (half-life of 138 h).  相似文献   

8.
In this study, the immobilized lipase was prepared by fabric membrane adsorption in fermentation broth. The lipase immobilization method in fermentation broth was optimized on broth activity units and pH adjustments. The viscose fermentation broth can be used with a certain percentage of dilution based on the original broth activity units. The fermentation broth can be processed directly without pH adjustment. In addition, the oleic acid ethyl ester production in solvent-free system catalyzed by the immobilized lipase was optimized. The molar ratio of ethanol to oil acid, the enzyme amount, the molecular amount, and the temperature were 1:1, 12% (w/w), 9% (w/w)(based the total amount of reaction mixture), and 30 °C, respectively. Finally, the optimal condition afforded at least 19 reuse numbers with esterification rate above 80% under stepwise addition of ethanol. Due to simple lipase immobilization preparation, acceptable esterification result during long-time batch reactions and lower cost; the whole process was suitable for industrial ethyl oleate production.  相似文献   

9.
Microbial lipase from Candida rugosa immobilized into porous chitosan beads was tested for esterification selectivity with butanol and different organic acids (C2–C12), and butyric acid and different aliphatic alcohols (C2–C10). After 24 h, the acids tested achieved conversions of about 40–45%. Acetic acid was the only exception, and in this case butanol was not consumed. Different alcohols led to butyric acid conversions >40%, except for ethanol, in which case butyric acid was converted only 26%. The system’s butanol and butyric acid were selected for a detailed study by employing an experimental design. The influence of temperature, initial catalyst concentration, and acid:alcohol molar ratio on the formation of butyl butyrate was simultaneously investigated, employing a 23 full factorial design. The range studied was 37–50°C for temperature (X1), 1.25–2.5% (w/v) for the catalyst concentration (X2), and 1 and 2 for the acid:alcohol molar ratio (X3). Catalyst concentration (X2) was found to be the most significant factor and its influence was positive. Maximum ester yield (83%) could be obtained when working at the lowest level for temperature (37°C), highest level for lipase concentration (2.5% [w/v]), and center level of acid:alcohol molar ratio (1.5). The immobilized lipase was also used repeatedly in batch esterification reactions of butanol with butyric acid, revealing a half-life of 86 h.  相似文献   

10.
Synthesis of monocaprin catalyzed by lipase   总被引:1,自引:0,他引:1  
The production of monoglyceride emulsifiers commonly employed in the food, cosmetic, and pharmaceutical industries can be catalyzed by lipases, biocatalysts that are becoming increasingly attractive in the enzyme market. The aim of this study was to produce monocaprin utilizing a commercial immobilized lipase (Lipozyme IM 20) through the direct esterification of capric acid and glycerol. Experiments were performed for 6 h in an open reactor and the products were analyzed by gas chromatography. The parameters investigated were the amount of enzyme, temperature, and molar ratio between the reagents (capric acid/glycerol). The experimental runs followed an experimental design generated using Statistica® software. The results showed that all the parameters were significant and that monocaprin production was enhanced at the lower ranges of the tested variables. The best conditions established were 55°C, 3% (w/w) enzyme concentration, and molar ratio of 1. The final product, obtained after 6 h of reaction, was 61.3% monocaprin, 19.9% dicaprin, and 18.8% capric acid. This composition satisfies the directives of the World Health Organization food emulsifiers, which requires that these mixtures have at least 70% mono- plus diglyceride, and a minimum of 30% monoacylglycerol.  相似文献   

11.
In order to decrease the content of linoleoyl moiety in soybean oil, soybean oil that contains 22.8% oleoyl, 54.8% linoleoyl, and 7.1% α-linolenoyl moieties as molar acyl moiety composition was interesterified in hexane with oleic acid or α-linolenic acid, using an immobilized sn-l,3-specific lipase (Lipozyme® IM) fromMucor miehei. The reactions were carried out in a batch reactor at 37°C in the following system: molar ratio of fatty acid to soybean oil = 1.0 ~ 6.0, 5.0 mL of hexane/500 μmol soybean oil, and 10.0 or 15.0 batch interesterification units of enzyme/500 μmol soybean oil. Under these reaction conditions, the rates of interesterification of acyl moieties in soybean oil were of the order: stearoyl > palmitoyl > linoleoyl > oleoyl > α-linolenoyl, and the reaction with oleic acid occurred without a significant loss of α-linolenoyl moiety. At the molar ratio of 3.0 and the reaction time of 6 h, triacylglycerols (TGs), which contain 50.8% oleoyl, 38.8% linoleoyl, and 5.4% α-linolenoyl moieties, were produced in the reaction with oleic acid; TGs that contain 13.5% oleoyl, 40.8% linoleoyl, and 40.4% α-linolenoyl moieties were obtained with α-linolenic acid. Approximately 86-88% of the interesterification of linoleoyl moiety, which occurred in 10 h, took place within 1 h.  相似文献   

12.
A highly efficient process for reducing the fatty acid (FA) content of high-acid rice bran oil (RBO) was developed by immobilized partial glycerides-selective lipase SMG1-F278N-catalyzed esterification/transesterification using methanol as a novel acyl acceptor. Molecular docking simulation indicated that methanol was much closer to the catalytic serine (Ser-171) compared with ethanol and glycerol, which might be one of the reasons for its high efficiency in the deacidification of high-acid RBO. Additionally, the reaction parameters were optimized to minimize the FA content of high-acid RBO. Under the optimal conditions (substrate molar ratio of methanol to FAs of 1.8:1, enzyme loading of 40 U/g, and at 30 °C), FA content decreased from 25.14 to 0.03% after 6 h of reaction. Immobilized SMG1-F278N exhibited excellent methanol tolerance and retained almost 100% of its initial activity after being used for ten batches. After purification by molecular distillation, the final product contained 97.86% triacylglycerol, 2.10% diacylglycerol, and 0.04% FA. The acid value of the final product was 0.09 mg KOH/g, which reached the grade one standard of edible oil. Overall, methanol was a superior acyl acceptor for the deacidification of high-acid RBO and the high reusability of immobilized SMG1-F278N indicates an economically attractive process.  相似文献   

13.
Ordered mesoporous silica material was synthesized from a low-cost precursor, sugarcane leaf ash, was used as a support matrix for lipase for the production of biodiesel. The mesoporous samples were characterized using Fourier transform infra red spectroscopy. The surface topography and morphology of the mesoporous materials were studied using scanning electron microscope. The pore diameter, pore volume, Brunauer Emmett and Teller surface area of the mesoporous material were determined by N2 gas adsorption technique. Different pore size Santa Barbara Acid-15 (SBA-15) samples were synthesized and their lipase immobilization capacity and specific enzyme activity of immobilization lipase were determined and compared. Lipase from Candida Antarctica immobilized on SBA-15 (C) had shown maximum percentage immobilization and specific enzyme activity. The immobilized lipase mesoporous matrix was used for biodiesel production from crude non-edible Calophyllum inophyllum oil. The percentage yield of fatty acid methyl ester, 97.6 % was obtained under optimized conditions: 100 mg of lipase immobilized on SBA-15, 6:1 methanol to oil molar ratio, the reaction of 2 g C. inophyllum oil with methanol.  相似文献   

14.
The aim of this present study was to produce a microbial enzyme that can potentially be utilized for the enzymatic transesterification of waste cooking oil. To that end, an extracellular lipase was isolated and purified from the culture broth of Streptomyces sp. CS273. The molecular mass of purified lipase was estimated to be 36.55 kDa by SDS PAGE. The optimum lipolytic activity was obtained at alkaline pH 8.0 to 8.5 and temperature 40 °C, while the enzyme was stable in the pH range 7.0?~?9.0 and at temperature ≤40 °C. The lipase showed highest hydrolytic activity towards p-nitrophenyl myristate (C14). The lipase activity was enhanced by several salts and detergents including NaCl, MnSo4, and deoxy cholic acid, while phenylmethylsulfonyl fluoride at concentration 10 mM inhibited the activity. The lipase showed tolerance towards different organic solvents including ethanol and methanol which are commonly used in transesterification reactions to displace alcohol from triglycerides (ester) contained in renewable resources to yield fatty acid alkyl esters known as biodiesel. Applicability of the lipase in transesterification of waste cooking oil was confirmed by gas chromatography mass spectrometry analysis.  相似文献   

15.
The possible application of native lipase ofNigella sativa seed in the esterification of fatty acids to glycerol was investigated, and the effect of process parameters and the enzyme selectivity on the reaction were determined. For this aim, the esterification of oleic acid, sunflower oil fatty acids, and coco oil fatty acids with glycerol were studied.  相似文献   

16.
Microorganisms producing lipase were isolated from soil and sewage samples and screened for enantioselective resolution of (R,S)-methyl mandelate to (R)-mandelic acid. A strain designated as GXU56 was obtained and identified as Burkholderia sp. Preparing immobilized GXU56 lipase by simple adsorption on octyl sepharose CL-4B, the optimum temperature was shifted from 40 °C (free lipase) to 50 °C (immobilized lipase), and the optimum pH was shifted from 8.0 (free lipase) to 7.2 (immobilized lipase). The immobilized enzyme displayed excellent stability in the pH range of 5.0–8.0, at the temperatures below 50 °C and in organic solvents compared with free enzyme. Enantioselectivity ratio for (R)-mandelic acid (E) was dramatically improved from 29.2 to more than 300 by applying immobilized lipase in the resolution of (R,S)-methyl mandelate. After five cycles of use of immobilized lipase, conversion and enantiomeric excess of (R)-mandelic acid were 34.5% and 98.5%, respectively, with enantioselectivity ratio for (R)-mandelic acid (E) of 230. Thus, octyl-sepharose-immobilized GXU56 lipase can be used as a bio-resolution reagent for producing (R)-mandelic acid.  相似文献   

17.
《Analytical letters》2012,45(5):783-796
Abstract

An amperometric procedure is described for the determination of glycerol and triglycerides in aqueous samples and in serum using glycerol dehydrogenase immobilized on a collagen membrane. Glycerol is determined by measurement of the steady-state oxidation currents generated at a platinum electrode by NADH produced in the enzyme-catalyzed reaction. The triglycerides were first hydrolyzed by the enzyme lipase in solution and the resulting glycerol determined similarly. Olive oil, determined to contain 78 % triolein, was used as the source of triglycerides in this study. For both glycerol and triglycerides the calibration plots are linear in the range from 0 to 12 μM, with detection limits of 0.2 and 0.7 μM, respectively. The immobilized glycerol dehydrogenase retained high operational activity for a period longer than 30 days.  相似文献   

18.
To reduce the content of linoleoyl moiety in soybean oil, soybean oil that contains 53.0% linoleoyl moiety as molar acyl moiety composition was interesterified with an omega-3 polyunsaturated fatty acid (PUFA) concentrate (24.0 mol% eicosapentaenoic acid [EPA], 40.4 mol% docosahexaenoic acid [DHA]) prepared from sardine oil, using an immobilized sn-1,3-specific lipase from Rhizomucor miehei (Lipozyme IM). The reaction was carried out in a batch reactor at 37 degrees C under the following conditions: 500 micromol of soybean oil, molar ratio of omega-3 PUFA concentrate to soybean oil = 1.0-6.0,5.0 mL of heptane, and 30 batch interesterification units of enzyme. After the reaction time of 72 h, modified soybean oil, which contains 34.9% linoleoyl, 10.1% eicosapentaenoyl, and 14.2% docosahexaenoyl moieties, was produced at the molar reactant ratio of 6.0. In this oil, the total omega-3 acyl moiety composition reached 34.1%; the molar ratio of omega-3 to omega-6 acyl moieties was enhanced by five times compared with soybean oil. Compared with palmitic acid, DHA was kinetically six times less reactive, although the EPA was by 16% more reactive.  相似文献   

19.
One relevant limitation hindering the industrial application of microbial lipases has been attributed to their production cost, which is determined by the production yield, enzyme stability among other. The objective of this work was to evaluate the concentration and immobilization of lipase extracts from Penicillium brevicompactum obtained by solid-state fermentation of babassu cake and castor bean cake. The precipitation with ammonium sulfate 60% of saturation of crude extract obtained with babassu cake as raw material showed an enhancement in hydrolytic and esterification activities from 31.82 to 227.57 U/g and from 170.92 to 207.40 U/g, respectively. Concentrated lipase extracts showed preference to medium-chain triglycerides and fatty acids. It is shown that the enzyme activity is maintained during storage at low temperatures (4 and −10°C) for up to 30 days. Higher esterification activities were achieved when the lipase extract was immobilized in sodium alginate and activated coal.  相似文献   

20.
Enzymatic epoxidation of vegetable oils using a long chain fatty acid as an active oxygen carrier could produce a desirable epoxy oxygen group content (EOC); however, the acid value (AV) of final epoxidized oil is too high. The present study was to investigate the effect of different fatty acids with varying length of carbon chain on EOC and AV of the final epoxidized soybean oil (ESO); finding butyric acid was the choice of active oxygen carrier when hydrogen peroxide was used as an oxygen donor in the presence of lipase Novozyme 435. And in situ IR was used to monitor the epoxidation process, which revealed that the formation of perbutyric acid was the key step in the whole reaction. The epoxidation process was optimized as follows: molar ratio of butyric acid/C=C bonds of 0.19:1, 8% of immobilized lipase Novozyme 435 load (relative to the weight of soybean oil) and molar ratio of H2O2/C=C bonds of 3.5:1, reaction time of 4 h and reaction temperature of 45 °C. Under these conditions, ESO with a high EOC (7.62 ± 0.20%) and a lower AV value (8.53 ± 0.18 mgKOH/g) was obtained. The oxriane conversion degree was up to 97.94%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号