首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We present theoretical analysis of plasmon dispersion in single-walled metallic carbon nanotubes (SWCNTs) in the presence of low-frequency electromagnetic radiation, based on classical electrodynamic formulations and linearized hydrodynamic model. We assume that metallic carbon nanotubes (CNTs) are charged due to the field emission, and hence the metallic nanotubes can be regarded as charged dust rods surrounded by degenerate electrons and ions. Calculations are performed for the transverse electric (TE) and transverse magnetic (TM) waves, respectively, by solving the Maxwell and hydrodynamic equations with appropriate boundary conditions.  相似文献   

2.
The nonlinear propagation of ultra-low-frequency dust-acoustic (DA) waves in a strongly coupled cryogenic dusty plasma has been investigated, by using the Boltzmann distributed electrons and ions, as well as modified hydrodynamic equations for strongly coupled charged dust grains. The reductive perturbation technique is used to derive the Burger equation. It is shown that strong correlations among negatively charged dust particles acts like a dissipation, which is responsible for the formation of the DA shock waves. The latter are associated with the negative potential, i.e. with the compression of negatively charged cryogenic dust particle density. It is also found that the effective dust-temperature, which arises from electrostatic interactions among negatively charged dust particles, significantly affects the height of the DA shock structures. New laboratory experiments at cryogenic temperature should be conducted to verify our theoretical prediction.  相似文献   

3.
In this letter, dispersion properties of low-frequency electrostatic waves in multi-wall fullerene (the first layer is C60molecule) are investigated. It is assumed that multi-wall fullerene is charged due to the field emission, and hence the multi-wall fullerene can be regarded as charged dust spheres surrounded by degenerate electrons and ions. We obtain the dispersion relation for the low-frequency electrostatic oscillations in the multi-wall fullerene by using the quantum hydrodynamic model in conjunction with the Poisson equation.  相似文献   

4.
It is shown that the parallel (magnetic field-aligned) velocity shear can drive the low-frequency (in comparison with the ion gyrofrequency) electrostatic (LF-ES) waves in an ultracold super-dense nonuniform magnetoplasma. By using an electron density response arising from the balance between the electrostatic and quantum Bohm forces, as well as the ion density response deduced from the continuity and momentum equations, a wave equation for the LF-ES waves is derived. In the local approximation, a new dispersion relation is obtained by Fourier transforming the wave equation. The dispersion relation reveals an oscillatory instability of dispersive drift-like modes in super-dense quantum magnetoplasmas.  相似文献   

5.
In this letter, dispersion properties of low-frequency electrostatic waves in a C60 molecule are investigated. It is assumed that C60 molecule is charged due to the field emission, and hence the C60 molecule can be regarded as charged dust spheres surrounded by degenerate electrons and ions. We obtain the dispersion relation for the low-frequency electrostatic oscillations in the C60 molecule by using the quantum hydrodynamic model in conjunction with the Poisson equation.  相似文献   

6.
The electrodynamics and dispersion properties of a magnetized dusty plasma containing elongated and rotating charged dust grains are examined. Starting from an appropriate Lagrangian for dust grains, a kinetic equation for the dust grain and the corresponding equations of motion are derived. Expressions for the dust charge and dust current densities are obtained with the finite size (the dipole moment) of elongated and rotating dust grains taken into account. These charge and current densities are combined with the Maxwell-Vlasov system of equations to derive dispersion relations for the electromagnetic and electrostatic waves in a dusty magnetoplasma. The dispersion relations are analyzed to demonstrate that the dust grain rotation introduces new classes of instabilities involving various low-frequency waves in a dusty magnetoplasma. Examples of various unstable low-frequency waves include the electron whistler, the dust whistler, dust cyclotron waves, AlfvÉn waves, electromagnetic ion-cyclotron waves, as well as lower-hybrid, electrostatic ion cyclotron, modified dust ion-acoustic waves, etc. Also found is a new type of unstable waves whose frequency is close to the dust grain rotation frequency. The present results should be useful in understanding the properties of low-frequency waves in cosmic and laboratory plasmas that are embedded in an external magnetic field and contain elongated and rotating charged dust grains.  相似文献   

7.
An adiabatic hot dusty plasma (containing non-inertial adiabatic electron and ion fluids, and negatively charged inertial adiabatic dust fluid) is considered. The basic properties of arbitrary amplitude dust-acoustic (DA) solitary waves, which exist in such an adiabatic hot dusty plasma, are explicitly examined by the pseudo-potential approach. To compare the basic properties (critical Mach number, amplitude and width) of the DA solitary waves observed in a dusty plasma containing adiabatic electron, ion and dust fluids with those observed in a dusty plasma containing isothermal electron and ion fluids and adiabatic dust fluid, it has been found that the adiabatic effect of inertia-less electron and ion fluids has significantly modified the basic properties of the DA solitary waves, and that on the basic properties of the DA solitary waves, the adiabatic effect of electron and ion fluids is much more significant than that of the dust fluid.  相似文献   

8.
A.A. Mamun 《Physics letters. A》2008,372(9):1490-1493
The nonlinear propagation of dust-ion-acoustic (DIA) waves in an adiabatic dusty plasma (containing adiabatic inertial-less electrons, adiabatic inertial ions, and negatively charged static dust) is investigated by the pseudo-potential approach. The combined effects of adiabatic electrons and negatively charged static dust on the basic properties (critical Mach number, amplitude, and width) of small as well as arbitrary amplitude DIA solitary waves are explicitly examined. It is found that the combined effects of adiabatic electrons and negatively charged static dust significantly modify the basic properties (critical Mach number, amplitude, and width) of the DIA solitary waves. It is also found that due to the effect of adiabaticity of electrons, negative DIA solitary waves [which are found to exist in a dusty plasma (containing isothermal electrons, cold ions, and negatively charged static dust) for α=zdnd0/ni0>2/3, where zd is the number of electrons residing onto a dust grain surface, nd0 is the constant (static) dust number density and ni0 is the equilibrium ion number density] disappears, i.e. due to the effect of adiabatic electrons, one cannot have negative DIA solitary waves for any possible set of dusty plasma parameters [0?α<1 and 0?σ=Ti0/Te0?1, where Ti0 (Te0) is electron (ion) temperature at equilibrium].  相似文献   

9.
10.
Dust ion-acoustic solitary waves in unmagnetized quantum plasmas are studied in spherical and cylindrical geometries. Using quantum hydrodynamic model, the electrostatic waves are investigated in the weakly nonlinear limit. A deformed Korteweg-de Vries (dKdV) equation is derived by using the reductive perturbation method and its numerical solutions are also presented. The quantum diffraction and quantum statistical effects incorporated in the system modifies the characteristics of dust ion-acoustic waves in cylindrical and spherical geometries. The role of stationary dust particles in quantum plasmas are also discussed. It is shown that the cylindrical and spherical dust ion-acoustic solitary waves behave quite differently from one-dimensional planar solitary waves in quantum plasmas.  相似文献   

11.
In this paper,a charged multi-walled carbon nanotube(MWCNT),which is surrounded by charged nanoparticles,is modeled as a cylindrical shell of electron-ion-dust plasma.By employing classical electrodynamics formulations and the linearized hydrodynamic model,the dispersion relation of the dust acoustic wave oscillations in the composed system is investigated.We obtain a new low-frequency electrostatic excitation in the MWCNT,i.e.dust acoustic wave oscillations.  相似文献   

12.
Linear and nonlinear electrostatic waves in unmagnetized electron-positron-ion (e-p-i) plasmas are studied. The electrons and positrons are assumed to be isothermal and dynamic while ions are considered to be stationary to neutralize the plasma background only. It is found that both upper (fast) and lower (slow) Langmuir waves can propagates in such a type of pair (e-p) plasma in the presence of ions. The small amplitude electrostatic Korteweg-de Vries (KdV) solitons are also obtained using reductive perturbation method. The electrostatic potential hump structures are found to exist when the temperature of the electrons is larger than the positrons, while the electrostatic potential dips are obtained in the reverse temperature conditions for electrons and positrons in e-p-i plasmas. The numerical results are also shown for illustration. The effects of different ion concentration and temperature ratios of electrons and positrons, on the formation of nonlinear electrostatic potential structures in e-p-i plasmas are also discussed.  相似文献   

13.
By using a quantum hydrodynamic (QHD) model, we derive a generalized dielectric constant for an unmagnetized quantum dusty plasma composed of electrons, ions, and charged dust particulates. Neglecting the electron inertial force in comparison with the electron pressure, and the force associated with the electron correlations at a quantum scale, we discuss two classes of electrostatic instabilities that are produced by streaming ions, and dust grains. The effects of the plasma streaming speeds, the thermal speed of electrons, and the quantum parameter are examined on the growth rates. The relevance of our investigation to dense astrophysical plasmas is discussed.  相似文献   

14.
H. Alinejad 《Physics letters. A》2009,373(33):2935-2939
The effect of deviations from isothermality of ions on arbitrary amplitude dust-acoustic solitary structures is studied in an unmagnetized dusty plasma which consists of a negative charged dust fluid, free electrons and hot ions obeying a trapped distribution. For the finite deviation from isothermality of ions, the basic properties of large amplitude solitary waves are studied by employing pseudo-potential approach. It is shown that the effect of such ion behavior changes the maximum values of the Mach number and the amplitude for which solitary wave can exist. For the case that the deviation from isothermality due to nonlinear resonant particle effects is small, calculations by reductive perturbation method leads to a generalized Korteweg-de Vries equation with mixed nonlinearity. The latter admits a stationary dust-acoustic solitary solution with similar width and qualitatively different amplitude in comparison to the case that deviations from isothermality are finite. Furthermore, effects of the equilibrium free electron density and such trapped ions on the amplitude of solitary structures imply a non-uniform transition from the Boltzmann ion distribution to the trapped ion one.  相似文献   

15.
The adsorption of glucose molecule on single-walled carbon nanotubes (SWCNTs) is investigated by density functional theory calculations. Adsorption energies and equilibrium distances are evaluated, and glucose binding to the typical semiconducting and metallic nanotubes with various diameters and chirality are compared. We also investigated the role of the structural defects on the adsorption capability of the SWCNTs. We could observe larger adsorption energies for the larger diameters semiconducting CNTs, while the story is paradoxical for the metallic CNTs. The obtained results reveal that the adsorption energy is significantly higher for nanotubes with higher chiral angles. Finally, the adsorption energies are calculated for defected nanotubes for various configurations such as glucose molecule approaching to the pentagon, hexagon, and heptagon sites in the tube surface. We find that the respected defects have a minor contribution to the adsorption mechanism of the glucose on SWNTs. The calculation of electron transfers and the density of states supports that the electronic properties of SWCNTs do not change significantly after the gluycose molecular adsorption. Consequently, one can predict that presence of glucose would neither modify the electronic structure of the SWCNTs nor direct to a change in the conductivity of the intrinsic nanotubes.  相似文献   

16.
The adsorption of glucose molecule on single-walled carbon nanotubes(SWCNTs)is investigated by density functional theory calculations.Adsorption energies and equilibrium distances are evaluated,and glucose binding to the typical semiconducting and metallic nanotubes with various diameters and chirality are compared.We also investigated the role of the structural defects on the adsorption capability of the SWCNTs.We could observe larger adsorption energies for the larger diameters semiconducting CNTs,while the story is paradoxical for the metallic CNTs.The obtained results reveal that the adsorption energy is significantly higher for nanotubes with higher chiral angles.Finally,the adsorption energies are calculated for defected nanotubes for various configurations such as glucose molecule approaching to the pentagon,hexagon,and heptagon sites in the tube surface.We find that the respected defects have a minor contribution to the adsorption mechanism of the glucose on SWNTs.The calculation of electron transfers and the density of states supports that the electronic properties of SWCNTs do not change significantly after the gluycose molecular adsorption.Consequently,one can predict that presence of glucose would neither modify the electronic structure of the SWCNTs nor direct to a change in the conductivity of the intrinsic nanotubes.  相似文献   

17.
We report a quantitative Grazing Incidence Small Angle X‐ray Scattering (GISAXS) study of a dense film of mutually oriented carbon nanotubes (CNTs) grown by a catalytically‐activated DC HF CCVD process after dispersion of metallic catalytic (Co) islands on SiO2/Si(100) substrates. The GISAXS pattern analysis is expanded to non‐correlated surface science systems and is based on CNTs density, characteristic lengths, atomic Co dispersion throughout the CNTs and roughnesses of uncorrelated particles. The results are closely compared to SEM and TEM observations. The GISAXS patterns, even dominated by envelope features of disordered objects, provide significant complementary quantitative data about CNTs films. The results underline that cobalt continuously fills the nanotube in the course of the growth and that the CNTs experience a large tendency toward mutual alignment. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
In order to improve the field emission properties of the graphite flakes, the carbon nanotubes (CNTs) are produced on above without the metallic catalyst using mixtures of C2H2 and H2 gases by thermal chemical vapor deposition. We spin the graphite solution on the silicon wafer and dry it, then synthesize the CNTs on the graphite flakes. We change the synthetic time to obtain the optimal conditions for enhancement of field emission properties of graphite flakes. The experimental results show that the density and quality of the CNTs could be controlled significantly by the synthetic time. Besides, the field emission properties of the treated graphite flakes are also affected greatly by it. The emission current density of the treated graphite flakes reaches to 0.5 mA/cm2 at 3 V/μm, and the turn-on field is decreased from 7.7 to 1.9 V/μm after producing the CNTs on above.  相似文献   

19.
We report new method for selectively removing the metallic CNTs from semiconducting CNTs in a powder using high-power microwave radiation in the infrared and radio frequency range of the electromagnetic spectrum. SWNTs in a powder film were heated in a 2.5 GHz microwave oven for a few minutes, and the metallic nanotubes burned more rapidly than the semiconducting nanotubes. Raman data showed that the ratio of metallic to semiconducting nanotubes decreased dramatically after exposure to microwave radiation. Using their more rapid absorption of the radiation energy of the microwaves, we achieved the selective removal of metallic SWNTs from semiconducting SWNTs. This method results in the high-purity of semiconducting SWNTs necessary for sensor and electronic applications.  相似文献   

20.
Afshin Moradi 《Physics letters. A》2008,372(34):5614-5616
We study theoretically the π-electron-hole plasma excitations in single-walled metallic carbon nanotubes within the framework of the classical electrodynamics. The π-electrons and holes of the nanotubes are described by means of the two-fluid hydrodynamic theory. Numerical results show that the low-energy excitations are in qualitative agreement with low-frequency excitations (π plasmon) in experimental observations in the case where the π-electron and hole effective masses are nearly equal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号