首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study an analytically solvable model for decoherence of a two spin system embedded in a large spin environment. As a measure of entanglement, we evaluate the concurrence for the Bell states (Einstein-Podolsky-Rosen pairs). We find that while for two separate spin baths all four Bell states lose their coherence with the same time dependence, for a common spin bath, two of the states decay faster than the others. We explain this difference by the relative orientation of the individual spins in the pair. We also examine how the Bell inequality is violated in the coherent regime. Both for one bath and two bath cases, we find that while two of the Bell states always obey the inequality, the other two violate the inequality at early times.  相似文献   

2.
We derive analytical properties for the degeneracy ν(N,j) occurring in the decomposition of the state space C2⊗N. We also investigate the dynamics of two qubits coupled via Ising interactions to separate spin baths, and we study the thermodynamic limit.  相似文献   

3.
Considering Milburn's intrinsic decoherence effect on quantum communication through a spin chain, we show that the transfer quality for quantum state and entanglement will obviously decrease with the increasing intrinsic decoherence rate. Some odd chains are much higher than even ones for the state transfer efficiency. The state transfer of a long chain is very sensitive to the intrinsic decoherence, which turns out to be an obstacle for information transport.  相似文献   

4.
The SWAP operation in a two-qubit Heisenberg model in the presence of Dzyaloshinskii–Moriya (DM) anisotropic antisymmetric interaction is investigated. It is shown that the SWAP operation can be implemented for some kinds of DM coupling and the influence of DM couplings is divided into different cases. The conditions of the DM coupling under which the SWAP operation is feasible are established.  相似文献   

5.
Yang Yang  Zhe Sun 《Physics letters. A》2008,372(24):4369-4372
We construct a geometric quantum phase shift gate for qudits in NMR systems. We study the operator entanglement and entangling power of the geometric gate for quantum computations.  相似文献   

6.
We study the time evolution of two electron spin states in a double quantum-dot system, which includes a nearby quantum point contact (QPC) as a measurement device. We find that the QPC measurement induced decoherence is in the microsecond timescale. We also find that the enhanced QPC measurement will trap the system in its initial spin states, which is consistent with the quantum Zeno effect.  相似文献   

7.
Nodal free geometric phases are the eigenvalues of the final member of a parallel transporting family of unitary operators. These phases are gauge invariant, always well defined, and can be measured interferometrically. Nodal free geometric phases can be used to construct various types of quantum phase gates.  相似文献   

8.
Thermal entanglement is investigated in a two-qubit Heisenberg XYZ system with different Dzyaloshinskii Moriya (DM) couplings. It is shown that different DM interaction parameters have different influences on the entanglement and the critical temperature. In addition, according to the relation between the real coupling coefficients Jx and Jz, a more efficient DM control parameter can be obtained by adjusting the direction of DM interaction.  相似文献   

9.
We study the geometric phase of an open two-level quantum system under the influence of a squeezed, thermal environment for both non-dissipative as well as dissipative system-environment interactions. In the non-dissipative case, squeezing is found to have a similar influence as temperature, of suppressing geometric phase, while in the dissipative case, squeezing tends to counteract the suppressive influence of temperature in certain regimes. Thus, an interesting feature that emerges from our work is the contrast in the interplay between squeezing and thermal effects in non-dissipative and dissipative interactions. This can be useful for the practical implementation of geometric quantum information processing. By interpreting the open quantum effects as noisy channels, we make the connection between geometric phase and quantum noise processes familiar from quantum information theory.  相似文献   

10.
Thermal entanglement is investigated in a two-qubit Heisenberg XYZ system with different inhomogeneous magnetic fields. It is found that different magnetic fields have different entanglement and critical values. In addition, according to the relation of spin-spin coupling coefficients, a more efficient control parameter of magnetic field can be obtained by adjusting the direction of external magnetic field.  相似文献   

11.
Thermal entanglement of a two-qutrit Ising system in the presence of an external homogeneous magnetic field and Dzialoshinski-Moriya (DM) interaction is investigated. Influences of magnetic field, temperature, and DM interaction on the entanglement have been characterized in terms of negativity for a wide range of parameters. The cases of parallel, antiparallel and transverse magnetic fields are considered. Results of detailed numerical calculations are explained using the analytically determined ground and excited states of the system. It is shown that at a given temperature, control of entanglement can be optimized by utilizing competing effects of the magnetic field and the DM interaction.  相似文献   

12.
Recent experiments, [G.A. Álvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, J. Chem. Phys. 124 (2006) 194507], have reported the observation of a quantum dynamical phase transition in the dynamics of a spin swapping gate. In order to explain this result from a microscopic perspective, we introduce a Hamiltonian model of a two level system with many-body interactions with an environment whose excitation dynamics is fully solved within the Keldysh formalism. If a particle starts in one of the states of the isolated system, the return probability oscillates with the Rabi frequency ω0. For weak interactions with the environment , we find a slower oscillation whose amplitude decays with a rate . However, beyond a finite critical interaction with the environment, , the decay rate becomes . The oscillation period diverges showing a quantum dynamical phase transition to a Quantum Zeno phase consistent with the experimental observations.  相似文献   

13.
We investigate the effects of nonlinear couplings and external magnetic field on the thermal entanglement in a two-spin-qutrit system by applying the concept of negativity. It is found that the nonlinear couplings favor the thermal entanglement creating. Only when the nonlinear couplings ∣K∣ are larger than a certain critical value does the entanglement exist. The dependence of the thermal entanglement in this system on the magnetic field and temperature is also presented. The critical magnetic field increases with the increasing nonlinear couplings constant ∣K∣. And for a fixed nonlinear couplings constant, the critical temperature is independent of the magnetic field B.  相似文献   

14.
We study the thermal entanglement properties of a simple system that includes three spins inhomogeneously coupled between them with additional anisotropy in their couplings. The main result is the systematic analysis of the concurrence evolution as functions of inhomogeneity, anisotropy and temperature. By adjusting proportional factor of the interaction J and anisotropy parameter △, the comparison between concurrences C12 andC13 is also presented.  相似文献   

15.
卓伟  王玉鹏 《中国物理快报》2007,24(12):3320-3321
The boundary quantum entanglement for the s = 1/2 X X Z spin chain with boundary impurities is studied via the density matrix renormalization group (DMRG) method. It is shown that the entanglement entropy of the boundary bond (the impurity and the chain spin next to it) behaves differently in different phases. The relationship between the singular points of the boundary entropy and boundary quantum critical points is discussed.  相似文献   

16.
Xin Li 《Physics letters. A》2008,372(30):4980-4984
In virtue of the quantum invariant theory, we obtain the rigorous solution of the isotropic bipartite system in rotational magnetic fields, based on which the general expression of the noncyclic geometric phase is worked out and the entanglement dependence of the noncyclic geometric phase in this model is investigated. We show that the influence of the coupling on noncyclic geometric phase depends on the initial condition of the system. We also show that when the magnetic fields are stationary, there is a more general class of states existed of which the noncyclic geometric phase could be interpreted solely in terms of the solid angle enclosed by the geodesically closed curve on a two-sphere parameterized by the evolving Schmidt coefficients.  相似文献   

17.
Liang Qiu  An Min Wang  Xiao Qiang Su 《Physica A》2008,387(26):6686-6692
We study the effect of the Dzyaloshinskill-Moriya anisotropic antisymmetric interaction (DM interaction) on entanglement teleportation in a two-qubit Heisenberg model with intrinsic decoherence taken into account. For some initial states of the channel, the DM interaction and intrinsic decoherence have no effect on the teleported entanglement and fidelity. While for other one, the DM interaction and intrinsic decoherence have a pronounced effect.  相似文献   

18.
We examine the notion of the adiabatic approximation in open systems by applying it to closed systems. Our results shows that the notion is equivalent to the standard adiabatic approximation if the systems are initially in eigenstates, and it leads to a more general expression if the systems are in mixed states.  相似文献   

19.
We studied the effects of Dzyaloshinski-Moriya (DM) anisoyropic antisymmetric interaction on entanglement and teleportation in a two-qubit Heisenberg chain with intrinsic decoherence taken into account. The main result is the systematic analysis of the negativity and fully entangled fraction’s evolution as a function of DM interaction D and time t. The contrast between the case of the maximally entangled initial state and unentangled ones is presented.  相似文献   

20.
Decomposition of a composite system C into different subsystems, A+B or D+ε, may help in avoiding decoherence. For example, the environment-induced decoherence for an A+B system need not destroy entanglement present in the D+ε system (A+B=C=D+ε). This new approach opens some questions also in the foundations of the quantum computation theory that might eventually lead to a new model of quantum computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号