首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chaotic motions of a rigid rotor in short journal bearings   总被引:65,自引:0,他引:65  
In the present paper the conditions that give rise to chaotic motions in a rigid rotor on short journal bearings are investigated and determined. A suitable symmetry was given to the rotor, to the supporting system, to the acting system of forces and to the system of initial conditions, in order to restrict the motions of the rotor to translatory whirl. For an assigned distance between the supports, the ratio between the transverse and the polar mass moments of the rotor was selected conveniently small, with the aim of avoiding conical instability. Since the theoretical analysis of a system's chaotic motions can only be carried out by means of numerical investigation, the procedure here adopted by the authors consists of numerical integration of the rotor's equations of motion, with trial and error regarding the three parameters that characterise the theoretical model of the system: m, the half non-dimensional mass of the rotor, , the modified Sommerfeld number relating to the lubricated bearings, and , the dimensionless value of rotor unbalance. In the rotor's equations of motion, the forces due to the lubricating film are written under the assumption of isothermal and laminar flow in short bearings. The number of numerical trials needed to find the system's chaotic responses has been greatly reduced by recognition of the fact that chaotic motions become possible when the value of the dimensionless static eccentricity % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnL2yY9% 2CVzgDGmvyUnhitvMCPzgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqe% fqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9irVeeu0d% Xdh9vqqj-hEeeu0xXdbba9frFf0-OqFfea0dXdd9vqaq-JfrVkFHe9% pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaaca% qabeaadaabauaaaOqaaiabew7aLnaaBaaaleaacaWGZbaabeaaaaa!4046!\[\varepsilon _s \] is greater than 0.4. In these conditions, non-periodic motions can be obtained even when rotor unbalance values are not particularly high (=0.05), whereas higher values (>0.4) make the rotor motion periodic and synchronous with the driving rotation. The present investigation has also identified the route that leads an assigned rotor to chaos when its angular speed is varied with prefixed values of the dimensionless unbalance . The theoretical results obtained have then been compared with experimental data. Both the theoretical and the experimental data have pointed out that in the circumstances investigated chaotic motions deserve more attention, from a technical point of view, than is normally ascribed to behaviours of this sort. This is mainly because such behaviours are usually considered of scarce practical significance owing to the typically bounded nature of chaotic evolution. The present analysis has shown that when the rotor exhibits chaotic motions, the centres of the journals describe orbits that alternate between small and large in an unpredictable and disordered manner. In these conditions the thickness of the lubricating film can assume values that are extremely low and such as to compromise the efficiency of the bearings, whereas the rotor is affected by inertia forces that are so high as to determine severe vibrations of the supports.Nomenclature C radial clearance of bearing (m) - D diameter of bearing (m) - e dimensional eccentricity of journal (m) - e s value of e corresponding to the static position of the journal - E dimensional static unbalance of rotor (m) - f x, f y =F x/(P), F y/(P): non-dimensional components of fluid film force - F x, F y dimensional components of fluid film force (N) - g acceleration of gravity (m/s2) - L axial length of bearing (m) - m % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnL2yY9% 2CVzgDGmvyUnhitvMCPzgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqe% fqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9irVeeu0d% Xdh9vqqj-hEeeu0xXdbba9frFf0-OqFfea0dXdd9vqaq-JfrVkFHe9% pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaaca% qabeaadaabauaaaOqaaiabg2da9maalaaabaGaeqyYdC3aaWbaaSqa% beaacaaIYaaaaaGcbaGaeqyYdC3aa0baaSqaaGabciaa-bdaaeaaca% WFYaaaaaaakiabg2da9maalaaabaGaeqyYdC3aaWbaaSqabeaacaaI% YaaaaOGaam4qaaqaaiabeo8aZjaadEgaaaaaaa!4C14!\[ = \frac{{\omega ^2 }}{{\omega _0^2 }} = \frac{{\omega ^2 C}}{{\sigma g}}\]: half non-dimensional mass of rotor - M half mass of rotor (kg) - n angular speed of rotor (in r.p.m.=60/2) - t time  相似文献   

2.
Guido  A. R.  Adiletta  G. 《Nonlinear dynamics》1999,19(4):359-385
In a previous paper, the dynamic behaviour of a Jeffcott rotor was studied in the presence of pure static unbalance and nonlinear elastic restoring forces. The present paper extends the analysis to a rigid rotor with an axial length such as to make the transverse moment of inertia greater than the axial one. As in the previous investigation, the elastic restoring forces are assumed to be nonlinear and the effects of couple unbalance are also included but, unlike the Jeffcott rotor, the system exhibits six degrees-of-freedom. The Lagrangian coordinates were fixed so as to coincide with the three coordinates of the centre of mass of the rotor and the three angular coordinates needed in order to express the rotor's rotations with respect to a reference frame having its origin in the centre of mass. The precession motions of such a rotor turn out to be cylindrical at low angular speeds and exhibit a conical aspect when operating at higher speeds. The motion equations of the rotor were written with reference to a system that was subsequently adopted for the experimental analysis. The particular feature of this system was the use of a steel wire (piano wire) for the rotor shaft, suitably constrained and with the possibility of regulating the tension of the wire itself, in order to increase or reduce the nonlinear character of the system. The numerical analysis performed with integration of the motion equations made it possible to point out that chaotic solutions were manifested only when the tension in the wire was given the lowest values – i.e. when the system was strongly nonlinear – in the presence of considerable damping and rotor unbalance values that were so high as to lose any practical significance. Under conditions commonly shared by analogous real systems characterised by poor damping, where the contribution to nonlinearity is almost entirely due to elastic restoring forces, the analysis pointed out that precession motions may be manifested with a periodic character, whether synchronous or not, or a quasi-periodic character, but in no case is the solution chaotic.  相似文献   

3.
An isotropic flexible shaft, acted by nonlinear fluid-induced forces generated from oil-lubricated journal bearings and hydrodynamic seal, is considered in this paper. Dimension reductions of the rotor system were carried out by both the standard Galerkin method and the nonlinear Galerkin method. Numerical simulations provide bifurcation diagrams, spectrum cascade, orbits of the disk center and Poincaré maps, to demonstrate the dynamical behaviors of the system. The results reveal transitions, or bifurcations, of the rotor whirl from being synchronous to non-synchronous as the unstable speed is exceeded. The non-synchronous oil/seal whirl is a quasi-periodic motion. In the regime of quasi-periodic motion, the “windows” of multi-periodic motion were found. The investigation shows that the nonlinear Galerkin method has an advantage over the standard one with the same order of truncations, because the influences of higher modes are considered by the former.  相似文献   

4.
为研究转子一轴承系统中非线性油膜力引起的半速涡动,本文给出了将吴文俊消去法和符号计算相结合的分析方法。基于短轴承假设,得到了单盘转子系统涡动时盘心、轴心及涡动角速度相对于无量纲转速的关系式。分析研究了转子涡动角速度变化规律及出现的双稳态现象。  相似文献   

5.
Due to the micro-fabrication limitations and the low thickness of the silicon wafer, the length-to-diameter ratio (L/D) of the gas journal bearings in Power MEMS is about one order lower than that of the conventional bearings, which suggests that the viscous friction force in the micro-bearing is comparable to the load capacity. The effects of viscous friction force on non-linear dynamic characteristics of the ultra-short micro-bearing-rotor system are studied in this paper. The molecular gas-film lubrication model, which valid for arbitrary Knudsen numbers, is systematically coupled with the rotor kinetic equations and solved simultaneously to investigate the non-linear dynamic behavior of the system. The center orbits, phase portraits, Poincaré maps, and FFT spectra of the system response at different L/D ratio, rotor mass, and bearing number, and the corresponding bifurcation diagrams for cases of ignoring and considering viscous friction force are inspected and compared. The results indicate that, if the viscous friction force is not taken into account in the case of low L/D ratio, the low-frequency large-amplitude self-excited whirl motion will be predicted as the increase of the rotor mass and the bearing number. However, when the viscous friction force is included in the non-linear dynamic model, the rotor motion becomes more stable under the same conditions, as the synchronous motion with smaller amplitude prevails.  相似文献   

6.
The transient nonlinear dynamics of a high-speed unbalanced rigid rotor dropping onto rigid sliding bearings is investigated. The equations of motion are formulated and solved numerically to examine dynamics of the rotor for different regimes of the touchdown process. The contribution of parameters such as unbalance, air gap, coefficient of friction, and coefficient of restitution to drop dynamics of the rotor are examined. When the unbalance is small, the resulting motion is also small. As the level of unbalance increases, the motion of the rotor becomes larger, so there is potential for damage to the rotor and the backup bearings. The orbits of the rotor in the backup bearings after the rotor drops, velocities, and power loss during sliding-whirling stages are presented for various initial conditions and system parameters. Finally, based on simulation results, some design guidelines and suggestions are given.  相似文献   

7.
This paper deals with the long term behaviour of flexible rotor systems, which are supported by nonlinear bearings. A system consisting of a rotor and a shaft which is supported by one oil journal bearing is investigated numerically. The shaft is modelled using finite elements and reduced using a component mode synthesis method. The bearings are modelled using the finite-length bearing theory. Branches of periodic solutions are calculated for three models of the system with an unbalance at the rotor. Also self-excited oscillations are calculated for the three models if no mass unbalance is present. The results show that a mass unbalance can stabilize rotor oscillations.  相似文献   

8.
This paper is concerned with the dynamics of a so-called fluid balancer; a hula hoop ring-like structure containing a small amount of liquid which, during rotation, is spun out to form a thin liquid layer on the outermost inner surface of the ring. The liquid is able to counteract unbalanced mass in an elastically mounted rotor. The paper derives the equations of motion for the coupled fluid–structure system, with the fluid equations based on shallow water theory. An approximate analytical solution is obtained via the method of multiple scales. For a rotor with an unbalance mass, and without fluid, it is well known that the unbalance mass is in the direction of the rotor deflection at sub-critical rotation speeds, and opposite to the direction of the rotor deflection at super-critical rotation speeds (when seen from a rotating coordinate system, attached to the rotor). The perturbation analysis of the problem involving fluid shows that the mass center of the fluid layer is in the direction of the rotor deflection for any rotation speed. In this way a surface wave on the fluid layer can counterbalance an unbalanced mass.  相似文献   

9.
汽车涡轮增压器广泛采用浮环轴承支承的小型轻质转子系统,以实现100 000~300 000 r/min的工作转速,提高发动机功率和动力性能,并降低燃油消耗和排放. 在此超高速工况下,动压油膜的强非线性作用和转子固有的不平衡效应使该系统呈现出复杂的动力学现象,其中油膜涡动、振荡、跳跃、倍周期分岔和混沌等非线性动力学行为对增压器的健康运转意义重大,因而备受关注. 本文作者从摩擦学动力学耦合的角度出发,基于流体动压轴承润滑理论和有限差分法计算非稳态油膜压力,结合达朗贝尔原理和传递矩阵法建立了转子离散化动力学方程,提出了一种由双油膜浮环支承的涡轮增压器转子系统动力学模型,并从转子轨迹、轴承偏心率、频谱响应、庞加莱映射和分岔特性等方面比较分析,描述了该非线性轴承-转子系统的不平衡效应及油膜失稳特征. 结果表明:转子一般在相对低速下作稳定的单周期不平衡振动,在高转速下其被油膜失稳引起的次同步涡动所抑制,但不平衡量的增加可阻碍转子以拟周期运动通向混沌运动的路径;适当不平衡补偿下,由于内、外油膜间交互的非线性刚度和阻尼作用,在油膜失稳区间之间的中高速区会出现适合增压器健康运转的稳定区间.   相似文献   

10.
The paper shows a rotordynamic model for electromagnetic excitation caused by an eccentric and angular rotor core in an induction motor. It is shown that an eccentric rotor core leads to an electromagnetic force and an angular rotor core to an electromagnetic moment, which both force the rotor to vibrate. For these two kinds of magnetic unbalance, a rotordynamic model was developed considering the influence of the oil film stiffness and damping of the sleeve bearings, the stiffness of the end-shields and bearing housings, the stiffness of the rotor, the electromagnetic stiffness—radial and angular electromagnetic stiffness—the mass moment of inertia and the gyroscopic effect of the rotor. With this model, the absolute orbits of the shaft centre, the shaft journals and the bearing housings can be calculated, as well as the relative orbits between the shaft journals and the bearing housings. Additionally, the bearing housing velocities can also be computed. In addition to the mathematical derivation of the model, also a numerical example is shown for clarification. The aim of the paper is, on the one hand, to show the mathematical coherences—based on an analytical model—between rotordynamics and the electromagnetics for an induction motor with an eccentric and angular rotor core and, on the other hand, to derive a calculation method for evaluating the vibration sensitivity regarding these two different kinds of magnetic unbalance.  相似文献   

11.
Deng  Song  Zhu  Xianlin  Qian  Dongsheng  Jiang  Shaofeng  Hua  Lin 《Nonlinear dynamics》2022,109(4):2547-2571
Nonlinear Dynamics - This paper proposes a nonlinear dynamic model of angular contact ball bearings with waviness and cage whirl motion. This original model establishes the interaction between...  相似文献   

12.
Rotor unbalance and rub-impact are major concerns in rotating machinery. In order to study the dynamic characteristics of these machinery faults, a dual-disc rotor system capable of describing the mechanical vibration resulting from multi-unbalances and multi-fixed-point rub-impact faults is formulated using Euler beam element. The Lankarani–Nikravesh model is used to describe the nonlinear impact forces between discs and casing convex points, and the Coulomb model is applied to simulate the frictional characteristics. To predict the moment of rub-impact happening, a linear interpolation method is carried out in the numerical simulation. The coupling equations are numerically solved using a combination of the linear interpolation method and the Runge–Kutta method. Then, the dynamic behaviours of the rotor system are analysed by the bifurcation diagram, whirl orbit, Poincaré map and spectrum plot. The effects of rotating speed, phase difference of unbalances, convex point of casing and initial clearance on the responses are investigated in detail. The numerical results reveal that a variety of motion types are found, such as periodic, multi-periodic and quasi-periodic motions. Moreover, the energy transfer between the compressor disc and the turbine disc occurs in the multi-fixed-point rubbing faults. Compared with the parameters of the turbine disc, those of the compressor disc can affect the motion of the rotor system more significantly. That is, the responses exhibit simple 1T-periodic motion in the wide range of rotating speed under the conditions of sharp convex point and larger initial clearance. These forms of dynamic characteristics can be effectively used to diagnose the fixed-point rub-impact faults.  相似文献   

13.
IntroductionSincetheendof 1 980s,asahighandnewtechnologyforactivevibrationcontrol,activemagneticbearings (AMBs)havebeenappliedinhighperformancecentrifugalcompressorsandpumpsinvolvedinlargetypepowerstations,jet_planes,spacecraftsandpetroleumoilpipingsystems,…  相似文献   

14.
High-speed rotors are often supported in floating ring bearings because of their good damping behavior. In contrast to conventional hydrodynamic bearings with a single oil film, full-floating ring bearings consist of two oil films: An inner and an outer oil film. As single oil-film bearings, full-floating ring bearings also show the typical fluid-film-induced instabilities (self-excited vibrations). Both inner and outer oil films can become unstable and exhibit oil whirl/whip instabilities. The paper at hand considers a Laval (Jeffcott) rotor, which is symmetrically supported in full-floating ring bearings, and investigates the occurring oil whirl/whip effects by means of run-up simulations. It is shown that the inner oil film, which usually becomes unstable first, gives rise to a limit-cycle oscillation with an exactly circular rotor orbit, if gravity and imbalance are neglected. Interesting is the instability generated by the outer oil film. The calculations demonstrate that instability in the outer oil film does not lead to a simple circular limit-cycle orbit. Whirl/whip-induced limit-cycle oscillations generated by the outer oil film are more complex and entail a coupled circumferential and radial motion, although the mechanical problem is radially symmetric, if gravity and imbalance are neglected. Thus, whirl/whip instability in the outer fluid film may be interpreted as symmetry breaking. Finally, a further kind of bifurcation/instability occurring in rotors supported in full-floating ring bearings—called Total Instability in this paper—is analyzed. It is shown that Total Instability is caused by synchronization of two limit cycles, namely synchronization of the inner and outer oil whirl/whip. Total Instability is of practical interest and observed in real technical rotor systems, and frequently leads to complete rotor damage.  相似文献   

15.
This research studies the effects of axial preload on nonlinear dynamic characteristics of a flexible rotor supported by angular contact ball bearings. A dynamic model of ball bearings is improved for modeling a five-degree-of-freedom rotor bearing system. The predicted results are in good agreement with prior experimental data, thus validating the proposed model. With or without considering unbalanced forces, the Floquet theory is employed to investigate the bifurcation and stability of system periodic solution. With the aid of Poincarè maps and frequency response, the unstable motion of system is analyzed in detail. Results show that the effects of axial preload applied to ball bearings on system dynamic characteristics are significant. The unstable periodic solution of a balanced rotor bearing system can be avoided when the applied axial preload is sufficient. The bifurcation margins of an unbalanced rotor bearing system enhance markedly as the axial preload increases and relates to system resonance speed.  相似文献   

16.
Zhang  Duzhou  Wu  Dengyun  Han  Qinkai  Wang  Hong 《Nonlinear dynamics》2021,103(3):2273-2286

The dynamic force transmissibility (DFT) of aerospace flywheel rotor system (FRS) supported by angular contact ball bearings (ACBBs) is examined in this paper. The influence of combined loads and contact angle variation is considered in the Sjovall formula to accurately solve the load distribution and nonlinear stiffness of ACBB. Subsequently, the lateral vibration model of FRS is established by considering the nonlinear stiffness characteristics of ACBB. The DFT of the system is solved via harmonic balance method and arc length continuation, and the stability of the results is determined. Numerical integration and dynamic tests are utilized to verify the accuracy of harmonic balance results. Based on the proposed model, the effects of rotor unbalance excitation, axial preload, and rotor damping on the DFT of the system are discussed. The soft-stiff transition phenomenon is observed in terms of the varying supporting stiffness of ACBB wherein deformation is measured under axial preload. The value of rotor unbalanced mass determines the nonlinear characteristics of FRS. The results provide an important reference for dynamic performance evaluation and vibration isolation device design of aerospace FRS.

  相似文献   

17.
碰摩裂纹转子轴承系统的周期运动稳定性及实验研究   总被引:1,自引:0,他引:1  
根据碰摩裂纹耦合故障转子轴承系统的非线性动力学方程,利用求解非线性非自治系统周期解的延拓打靶法,研究了系统周期运动的稳定性。研究发现,小偏心量下系统周期运动发生Hopf分岔,大偏心量下系统周期运动发生倍周期分岔,偏心量的加大使周期解的稳定性明显降低;系统碰摩间隙变小,碰摩影响了油膜涡动的形成,使失稳转速有所提高;裂纹深度的加大降低了系统周期运动的稳定性。本文的研究为转子轴承系统的安全稳定运行提供了理论参考。  相似文献   

18.
Adiletta  G.  Guido  A. R.  Rossi  C. 《Nonlinear dynamics》1997,14(2):157-189
In the first part of the present investigation [9], the dynamic behaviour of a rigid rotor supported on plain journal bearings was studied, focusing particular attention on its nonlinear aspects. In the present paper an experimental confirmation of the theoretical results is sought. The steel rotor of the experimental rig was given a constant circular cross section in order to fix in an easy way the two distances between supports corresponding, respectively, to the values of the parameter assigned in [9]. Two steel rings, each one with a series of holes and a clamping screw, were mounted onto the rotor with a small clearance. This arrangement made it possible to fix the positions of the rings and their holes respect to the rotor, so as to realize a pre-estabilished unbalance. The two bronze journal bearings were characterised by a relatively low length/diameter ratio, and a relatively high value of the radial clearance and were lubricated with oil delivered from a thermostatic tank. In this way, despite the relative lightness of the rotor, the dimensionless static eccentricity s was given the high values that were apt to realize the operating conditions assumed in the theoretical analysis. The rotor was driven by means of a d.c. motor connected to a toothed belt-drive. Varying the rotor speed in the range 1000 ÷ 10000 r.p.m., made it possible to assign the values of the modified Sommerfeld number assumed in the theoretical analysis. Three pairs of eddy-current probes were mounted in order to detect the trajectories of three points (C1, C and C2) suitably fixed along the rotor axis. These orbits were finally put in comparison with the corresponding ones previously obtained through numerical analysis. The comparison pointed out that the experimental data were in good agreement with the theoretical predictions, despite the approximations that characterise the theoretical model and the unavoidable errors affecting measures in the course of the experimental test.  相似文献   

19.
A spherical shape of the outer surface of rotors of some types of noncontact gyroscopes gives rise to conditions, where the force field ensures the stability of the center of mass relative to the base and has an insignificant effect on the angular motion of the rotor. However, there are some effects (for instance, the Barnett—London effect), which lead to emergence of moments of mechanical forces even for spherical bodies. The effect of rotor elasticity on the motion of a superconducting deformable spherical solid body in a magnetic field is studies. It is shown that the moment of mechanical forces acting on the body in the magnetic field is proportional in the first approximation to the angular velocity squared. The effect of this moment on the dynamics of angular motion of the rotor is studied.  相似文献   

20.
The performance of a ball bearing–rotor system is often limited by the occurrence of subharmonic resonance with considerable vibration and noise. In order to comprehend the inherent mechanism and the feature of the subharmonic resonance, a symmetrical rotor system supported by ball bearings is studied with numerical analysis and experiment in this paper. A 6DOF rotordynamic model which includes the non-linearity of ball bearings, Hertzian contact forces and bearing internal clearance, and the bending vibration of rotor is presented and an experimental rig is offered for the research of the subharmonic resonance of the ball bearing–rotor system. The dynamic response is investigated with the aid of orbit and amplitude spectrum, and the non-linear system stability is analyzed using the Floquet theory. All of the predicted results coincide well with the experimental data to validate the proposed model. Numerical and experimental results show that the resonance frequency is provoked when the speed is in the vicinity of twice synchroresonance frequency, while the rotor system loses stability through a period-doubling bifurcation and a period-2 motion i.e. subharmonic resonance occurs. It is found that the occurrence of subharmonic resonance is due to the together influence of the non-linear factors, Hertzian contact forces and internal clearance of ball bearings. The effect of unbalance load on subharmonic resonance of the rotor system is minor, which is different from that of the sliding bearing–rotor system. However, the moment of couple has an impact influence on the subharmonic resonances of the ball bearing–rotor system. The numerical and experimental results indicate that the subharmonic resonance caused by ball bearings is a noticeable issue in the optimum design and failure diagnosis of a high-speed rotary machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号