首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 224 毫秒
1.
We demonstrate a reversible resistance switching effect that does not rely on amorphous-crystalline phase transformation in a nanoscale capacitor-like cell using Ge1Sb4Te7 films as the working material. The polarity and amplitude of the applied electric voltage switches the cell resistance between low- and high-resistance states, as revealed in the current-voltage characteristics of the film by conductive atomic force microscopy (CAFM). This reversible SET/RESET switching effect is induced by voltage pulses and their polarity. The change of electrical resistance due to the switching effect is approximately two orders of magnitude.  相似文献   

2.
Carrier injection performed in Pro.7 Cao.aMnOa junctions demonstrate resistance switching (RS) characteristic with dramatic changes in both resistances and interface barriers, which suggests a charge carrier self-trapping model in strongly correlated electronic framework. Un-stable RS behaviour without electric fields in epitaxial Pr0.7(Ca1-xSrx)0.3MnO3 (PCSMO) films shows dependences on insulator-metal transition temperature, which indicates that RS process is really related to the intrinsic property of carriers. The switched resistance of epitaxial PCSMO films also depends on the amount of current pulses, which shouM be another evidence of the carrier self-trapping model, similarly to the dependence on the amount of self-trapped charge carriers.  相似文献   

3.
Ag-doped and pure ZrO2 thin films are prepared on Pt/Ti/SiO2/Si substrates by sol-gel process for resistive random access memory application. The highly reproducible resistive switching is achieved in the 10% Ag-doped ZrO2 devices. The improved resistive switching behaviour in the Ag doped ZrO2 devices could be attributed to Ag doping effect on the formation of the stablefilamentary conducting paths. In addition, dual-step reset processes corresponding to three stable resistance states are observed in the 10% Ag doped ZrO2 devices, which may be implemented for the application of multi-bit storage.  相似文献   

4.
Thermal stability of resistive switching of stoichiometric zirconium oxide thin films is investigated for high yielding nonvolatile memory application. The A1/ZrO2/AI cell fabricated in the conventional device process shows highly reliable switching behaviour between two distinct stable resistance states. The retention capabilities are also tested under various conditions and temperatures. The excellent performance of Ai/ZrO2/AI ceil can be explained by assuming that anode/ZrO2 interface exists and by conducting filament forming/rupture mechanism. The device failure is illustrated in terms of permanent conducting filaments formation.  相似文献   

5.
A series of Co0.48 (Alq3)0.52 granular films were deposited on silicon substrates using the co-evaporating technique. A crossover of magnetoresistance (MR) from negative to positive was observed in the samples, due to conducting channel switching. The transport properties of samples are greatly influenced by hydrofluoric acid pretreatment, as a result, positive MR decreases drastically and the temperature dependence of resistance changes a lot near room temperature. The result indicates that the native oxide layer plays an important role in the transport mechanism. Moreover, different resistivities of Si substrates influence the current distribution of conducting channels, leading to different transport behaviors accordingly.  相似文献   

6.
Hydrogen Sensors Based on AlGaN/AlN/GaN Schottky Diodes   总被引:2,自引:0,他引:2       下载免费PDF全文
Pt/AlGaN/AlN/GaN Schottky diodes are fabricated and characterized for hydrogen sensing. The Pt Schottky contact and the Ti/Al/Ni/Au ohmic contact are formed by evaporation. Both the forward and reverse currents of the device increase greatly when exposed to hydrogen gas. A shift of 0.3 V at 300 K is obtained at a fixed forward current after switching from N2 to 10%H2+N2. The sensor responses under different concentrations from 50ppm H2 to 10%H2+N2 at 373K are investigated. Time dependences of the device forward current at 0.5 V forward bias in N2 and air atmosphere at 300 and 373K are compared. Oxygen in air azcelerates the desorption of the hydrogen and the recovery of the sensor. Finally, the decrease of the Schottky barrier height and sensitivity Of the sensor are calculated.  相似文献   

7.
Electrical characteristics of In0.05 Ga0.95N/Al0.07Ga0.9aN and In0.05 Ga0.95N/GaN multiple quantum well (MQW) ultraviolet light-emltting diodes (UV-LEDs) at 400hm wavelength are measured. It is found that for InGaN/AlGaN MQW LEDs, both ideality factor and parallel resistance are similar to those of InGaN/GaN MQW LEDs, while series resistance is two times larger. It is suggested that the Al0.07Ga0.93N barrier layer did not change crystal quality and electrical characteristic of p-n junction either, but brought larger series resistance. As a result, InGaN/AlGaN MQW LEDs suffer more serious thermal dissipation problem although they show higher light output efficiency.  相似文献   

8.
El3ctronic properties, surface chemistry and surface morphology of plasma-treated n-Al0.4Ga0.6N material are studied by electrical contact measurements, atomic force microscopy and x-ray photoemission spectroscopy. Although excessive etching can cause the surface roughness to significantly increase, the nitrogen vacancies VN produced by the excessive etching can be compensated for by the negative effects of the rougher surface. Thus, VN produced by excessive etching plays a key role in Ohmic contact of high-A1 content AIGaN and it can reduce Ohmic contact resistance. The effect of rapid thermal annealing on the performance of n-Al0.4Ga0.6N can significantly reduce the etching damage caused by excessive etching.  相似文献   

9.
In situ high pressure energy-dispersive x-ray synchrotron radiation diffraction and resistance experiments are carried out on CaCuMn6O12. Its crystal structure is stable in the measured pressure range. The equation of state of CaCuMn6O12 is obtained from the V/Vo - P relationship (V and Vo are the volumes at pressure P and at atmosphere). The bulk modulus Bo is calculated based on the Birch-Murnaghan equation. Low temperature x-ray diffraction shows no phase transition occurring down to 160K.  相似文献   

10.
Bi3.25La0.75 Ti3O12 (BLT) ferroelectric thin films are deposited by sol-gel method and annealed for crystallizaion in total l eccm N2/02 mixed gas with various ratio at 750℃ for 30rain. The effect of crystallization ambient on the structural and ferroelectric properties of the BLT films is studied. The growth direction and grain size of BLT film are revealed to affect ferroeleetric properties. Alter the BLT film is annealed in 20%O2, the largest P~ value is obtained, which is ascribed to an increase of random orientation and large grain size. The fatigue property is improved with the concentration of oxygen in the ambient increasing, which is ascribed to annealing in the ambient with high concentrated oxygen adequately decreasing the defects related to lack of oxygen.  相似文献   

11.
Highly arsenic-doped Si-on-insulator (SOI) substrate incorporated with buried MoSi2 layers is fabricated aiming at decreasing the collector series resistance of SiGe heterojunction bipolar transistors (HBTs) on SOI, thereby enhancing cutoff frequency (fT) performance and increasing the maximum value of fT (fTMAX ). The .fT performance at medium current is enhanced and current required for fT = 15 GHz is reduced by half The value of fTMAX is improved by 30%.  相似文献   

12.
Physical properties of polycrystailine ferroelectrics including the contributions of the fixed dipolar defects and the average grain size in the Potts-Ising model are simulated by using the Monte Carlo method. Domain pattern, hysteresis loop and switching current of the polarization reversal process are obtained. Two processes are considered in our simulation. In the first one, the grain texture of ferroelectric ceramics are produced from the Ports model, and then the Ising model is implemented in the obtained polycrystailine texture to produce the domain pattern, hysteresis loop and switching current. It is concluded that the defect has the ability to decrease the remnant polarization P~ as well as the coercive field E~. The back switching is obviously observed after the electric field is off, and it shows some variation after introducing the fixed dipolar defect. Meanwhile, the spike of the switching current is found to lower with the increasing defect concentration and the decreasing average grain size.  相似文献   

13.
We present the magnetoresistance measurements of ultrathin Mn5Ge3 films with different thicknesses at low temperatures. Owing to the lattice mismatch between MnsGe3 and Ge (111), the thickness of MnsGe3 films has a significant effect on the magnetoresistance. When the thickness of Mn is more than 72 monolayers (MLs), the magnetoresistance of the Mn5 Ge3 films appears a peak at about 6 kOe, which shows that the magnetoresistance results from the Anderson weak localization effect and the variable range hopping in the presence of a magnetic field. The magnetic and semiconducting properties indicate that the Mn5 Ge3 film is a potential material for spin injection.  相似文献   

14.
We report the amorphization induced high magneto-caloric effect (MCE) of recently developed Gd55Al15Ni30 bulk metallic glass (BMG). The magnetic properties of the Gd55Al15Ni30 BMG are investigated in comparison with that of its crystalline counterpart. It is found that amorphization can increase the saturation magnetization and decrease the hysteresis of Gd55Al15Ni30 alloys, which indicate the possible enhancement of MCE. The magnetic entropy changes and the refrigerant capacity of the BMG as well as the crystalline samples is calculated directly from isothermal magnetic measurements. The results show the amorphization induced high MCE of the alloy and the excellent refrigerant efficiency of Gd55Al15Ni30 bulk metallic glass.  相似文献   

15.
Al0.2 Ga0.8N/GaN samples are grown by metalorganic chemical vapour deposition (MOCVD) method on (0001) sapphire substrates. A 10nm-thick Ni layer is deposited on AlGaN as the transparent Schottky contact. The effect of postannealing in oxygen ambient on the electrical properties of Ni/AlGaN is studied by current-voltage- temperature (I-V-T) measurement. The annealing at a relatively low temperature of 300℃ for 90 s results in a decrease of the ideality factor from 2.03 to 1.30 and an increase of the Schottky barrier height from 0.77eV to 0.954 e V. The I-V-T analysis confirms the improvement originated from the formation of NiO, a layer with higher resistance, which could passivate the surface states of AlGaN and suppress the tunnelling current. Furthermore, the annealing also leads to an increase of the transmittance of the contacts from 57.5% to 78.2%, which would be favourable for A1GaN-based photodetectors.  相似文献   

16.
Photovoltaic response in the heterojunction of La1-x SrxMnO3/SrNby Ti1-yO3 (LSMO/SNTO) is analyzed theoretically based on the drift-diffusion model. It is found that the decrease of acceptor concentration in the La1-xSrxMnO3 layer of hereto junction can increase the peak value of photovoltaic signal and the speed of photovoltaic response, whereas the changing of donor concentration in the SrNby Ti1-yO3 layer has no such evident effect. Furthermore, the result also indicates that the modulation of Sr doping in La1-xSrxMnO3 is an effective method to accommodate the sensitivity and the speed of photovoltaic response for LSMO/SNTO photoelectric devices.  相似文献   

17.
Ca3Y2 (BO3)4:Eu^3+ phosphor is synthesized by high temperature solid-state reaction method, and the Iuminescence characteristics are investigated. The emission spectrum exhibits two strong red emissions at 613 and 621 nm corresponding to the electric dipole ^5 Do- ^7F2 transition of Eu^3+ under 365 nm excitation, the reason is that Eu^3+ substituting for Y^3+ occupies the non-centrosymmetric position in the crystal structure of Ca3 Y2 (BO3)4. The excitation spectrum for 613 nm indicates that the phosphor can be effectively excited by ultraviolet (UV) (254 nm, 365nm and 400nm) and blue (470nm) light. The effect of Eu^3+ concentration on the emission intensity of Ca3 Y2 (BO3)4 :Eu^3+ phosphor is measured, the result shows that the emission intensities increase with increasing Eu^3+ concentration, then decrease. The CIE colour coordinates of Ca3Y2 (BO3)4:Eu^3+ phosphor is (0.639, 0.357) at 15mol% Eu^3+.  相似文献   

18.
Bi0.5 (Na0.72K0.28- x Lix )0.5 TiO3 (BNKLT- 100x) lead-free piezoelectric ceramics are synthesized by conventional solid state sintering techniques. The dielectric and piezoelectric properties of the BNKLT-100x ceramics as a function of Li content are systematically investigated. It is found that not only Li content but also the sintering temperature has a strong effect on the piezoelectric properties of BNKLT. The piezoelectric constant d33 Of BNKLT varies from 120 to 252pC/N in the Li content range from 0.03 to 0.16. In the sintering temperature range from 1080 to 1130℃, the d33 value of BNKLT-6 changes from 200pC/N to 252pC/N. The BNKLT-6 sample sintered at 1100℃ has the highest piezoelectric constant d33 of 252pC/N, with the electromechanical coupling factors kp of 0.32 and kt of 0.44.  相似文献   

19.
The effect of La doping on the electronic structure and optical properties of SrTiO3 and Sr2TiO4 is investigated by the first-principles calculation of plane wave ultrasoft pseudopotential based on the density function theory (DFT). The calculated results reveal that the electron doping in the case of Sr0.875La0.125TiO3 and Sr1.875La0.125TiO4 can be described within the rigid band model. The La3+ ions fully acts as electron donors in Sr0.875La0.125TiO3 and Sr1.875La0.125TiO4 systems and the Fermi level shifts further into the conduction bands (CBs) for Sr1.875La0.125TiO4 compared to Sr0.875La0.125TiO3. The two systems exhibit n-type degenerate semiconductor features. At the same time, the density of states (DOS) of the two systems shift towards low energies and the optical band gaps are broadened. The Sr1.875La0.125TiO4 is highly transparent with the transmittance about 90% in the visible range, which is larger than that of Sr0.875La0.125TiO3(85%). The wide band gap, small transition probability and weak absorption due to the low partial density of states (PDOS) of impurity in the Fermi level result in the optical transparency of the films...  相似文献   

20.
The effects of working pressure on properties of Al2O3 thin films are investigated. Transmittance of the Al2O3 thin film is measured by a Lambda 900 spectrometer. Laser-induced damage threshold (LIDT) is measured by a Nd:YAG laser at 355 nm with a pulse width of 7ns. Microdefects were observed under a Nomarski microscope. The samples are characterized by optical properties and defect, as well as LIDT under the 355 nm Nd:YAG laser radiation. It is found that the working pressure has fundamental effect on the LIDT. It is the absorption rather than the microdefect that plays an important role on the LIDT of Al2O3 thin film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号