首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of nitrous oxide, N2O, on a Rh110 surface has been characterized by using density-functional theory. N2O was found to bind to the surface in two alternative forms. The first, less stable form is tilted with the terminal N atom attached to the surface, while the second, more stable form lies horizontally on the surface. Adsorption on the on-top site is more stable than that on the bridge site. The tilted form remains linear on adsorption, while the horizontal form is bent, with the terminal-nitrogen and oxygen atoms pointing towards the surface. At lower adsorbate coverage, Theta less than or similar to 1/4 ML (ML-monolayer), the adsorption of a few horizontal N2O configurations is dissociative, i.e., N2O-->N2(a)+O(a). The N2O-surface interaction is discussed in terms of the electronic structure analysis.  相似文献   

2.
The adsorption of water on V2O3(0001) surfaces has been investigated by thermal desorption spectroscopy, high-resolution electron energy loss spectroscopy, and X-ray photoelectron spectroscopy with use of synchrotron radiation. The V2O3(0001) surfaces have been generated in epitaxial thin film form on a Rh(111) substrate with three different surface terminations according to the particular preparation conditions. The stable surface in thermodynamic equilibrium with the bulk is formed by a vanadyl (VO) (1x1) surface layer, but an oxygen-rich (radical3xradical3)R30 degrees reconstruction can be prepared under a higher chemical potential of oxygen (microO), whereas a V-terminated surface consisting of a vanadium surface layer requires a low microO, which can be achieved experimentally by the deposition of V atoms onto the (1x1) VO surface. The latter two surfaces have been used to model, in a controlled way, oxygen and vanadium containing defect centres on V2O3. On the (1x1) V=O and (radical3xradical3)R30 degrees surfaces, which expose only oxygen surface sites, the experimental results indicate consistently that the molecular adsorption of water provides the predominant adsorption channel. In contrast, on the V-terminated (1/radical3x1/radical3)R30 degrees surface the dissociation of water and the formation of surface hydroxyl species at 100 K is readily observed. Besides the dissociative adsorption a molecular adsorption channel exists also on the V-terminated V2O3(0001) surface, so that the water monolayer consists of both OH and molecular H2O species. The V surface layer on V2O3 is very reactive and is reoxidised by adsorbed water at 250 K, yielding surface vanadyl species. The results of this study indicate that V surface centres are necessary for the dissociation of water on V2O3 surfaces.  相似文献   

3.
The authors have investigated the structure and energetics of the first hydration layer on NaCl(100) by means of density functional calculations. They have analyzed in detail the role of the hydrogen bond between the adsorbed molecules for the determination of the most favorable structures. They have shown that, using the water dimers as basic building blocks, very stable structures can be constructed. They discuss here two important examples: (i) a model with (1x1) periodicity at 2 ML coverage, and (ii) icelike bilayers with a c(4x2) unit cell at 1.5 ML. Both structures present high adsorption energies per water molecule of approximately 570 meV, in comparison to the 350 meV adsorption energy obtained for the previously studied (1x1) structures composed of weakly interacting monomers. Based on these findings, they propose an interpretation for the experimental observations of Toennies et al. [J. Chem. Phys. 120, 11347 (2004)], who found a transition of the periodicity of the first hydration layer on NaCl(100) from (1x1) to c(4x2) upon electron irradiation. According to the model, the transition would be driven by the partial desorption of (1x1) bilayer structures corresponding to a local coverage of 2 ML and the further rearrangement of the remaining water molecules to form a quasihexagonal structure with c(4x2) periodicity at coverage close to 1.5 ML.  相似文献   

4.
The reactions of Ln(NO(3))(3) (Ln = La, Er) with 1,4-phenylendiacetic acid (H(2)PDA) under hydrothermal conditions produce isostructural lanthanide coordination polymers with the empirical formula [Ln(2)(PDA)(3)(H(2)O)] x 2H(2)O. The extended structure of [Ln(2)(PDA)(3)(H(2)O)] x 2H(2)O consists of Ln-COO triple helices cross-linked through the [bond]CH(2)C(6)H(4)CH(2)[bond] spacers of the PDA anions, showing 1D open channels along the crystallographic c axis that accommodate the guest and coordinated water molecules. Evacuation of [Er(2)(PDA)(3)(H(2)O)] x 2H(2)O at room temperature and at 200 degrees C, respectively, generates [Er(2)(PDA)(3)(H(2)O)] and [Er(2)(PDA)(3)], both of which give powder X-ray diffraction patterns consistent with that of [Er(2)(PDA)(3)(H(2)O)] x 2H(2)O. The porosity of [Er(2)(PDA)(3)(H(2)O)] and [Er(2)(PDA)(3)] is further demonstrated by their ability to adsorb water vapor to form [Er(2)(PDA)(3)(H(2)O)] x 2H(2)O quantitatively. Thermogravimetric analyses show that [Er(2)(PDA)(3)] remains stable up to 450 degrees C. The effective pore window size in [Er(2)(PDA)(3)] is estimated at 3.4 A. Gas adsorption measurements indicate that [Er(2)(PDA)(3)] adsorbs CO(2) into its pores and shows nonporous behavior toward Ar or N(2). There is a general correlation between the pore size and the kinetic diameters of the adsorbates (CO(2) = 3.3 A, Ar = 3.40 A, and N(2) = 3.64 A). That the adsorption favors CO(2) over Ar is unprecedented and may arise from the combined differentiations on size and on host-guest interactions.  相似文献   

5.
董虹志 《分子催化》2012,26(6):554-559
通过密度泛函理论的第一性原理,模拟了CO2分子在SrTiO3(100)表面TiO2-和SrO-位点上的吸附行为,获得了CO2在几种不同吸附模型下的结构参数及表面吸附能,进而研究了吸附机理和结构稳定性.计算结果表明,当CO2的C原子吸附在SrTiO3(100)表面SrO-及TiO2-位点的氧原子上时,吸附结构较稳定,尤其是C、O原子共吸附在TiO2-位点时最稳定,而其余吸附模型则不稳定.对吸附稳定模型的Mulliken布局数及态密度分析显示:CO2分子在SrTiO3(100)表面吸附主要是由于SrTiO3(100)面的电子跃迁至CO2分子,CO2分子得到电子形成弯曲的CO2-阴离子结构,并伴随着C-O键的伸长,从而达到吸附活化CO2的目的.  相似文献   

6.
采用第一性原理方法研究了H2分子在两种Li3N(100)晶面的表面吸附情况. 通过研究Li3N(100)/H2体系的吸附位置、吸附能和电子结构, 发现H2分子在Li3N(100)晶面主要是化学吸附, 但也可以发生物理吸附. 在表面终止原子为Li和N的Li3N(100)表面, 吸附的最稳定结构中H2分子被解离, 最终H原子分别趋于两个N原子的顶位, 形成两个NH基, 吸附能为5.157 eV, 属于强化学吸附|此时H2分子与Li3N(100)表面的相互作用主要源于H1s轨道与Li3N表层N原子的2s, 2p轨道重叠杂化的贡献, 且N-H键为共价键. 在表面终止原子为Li的Li3N(100)表面, 吸附的最稳定结构中H2分子也被解离, H原子趋于穴位, 吸附能为2.464 eV, 也属于强化学吸附|此时Li和H之间为较强的离子键相互作用.  相似文献   

7.
The structure of the nickel N,N'-piperazinebismethylenephosphonate, Ni-STA-12 (St. Andrews porous material-12), has been determined in the hydrated (Ni2L x 8 H2O, L = O3PCH2NC4H8NCH2PO3), partially dehydrated (Ni2L x 2 H2O), and fully dehydrated (Ni2L) forms from high-resolution synchrotron X-ray powder diffraction. The framework structures of Ni2L x 8 H2O and Ni2L x 2 H2O are almost identical (R, a = 27.8342(1) A, c = 6.2421(2) A; R, a = 27.9144(1) A, c = 6.1655(2) A) with additional physisorbed water of the as-prepared Ni-STA-12 present in an ordered hydrogen-bonded network in the channels. Ab initio structure solution of the fully dehydrated solid indicates it has changed symmetry to triclinic (P1, a = 6.03475(5) A, b = 14.9157(2) A, c = 16.1572(2) A, alpha = 112.5721(7) degrees, beta = 95.7025(11) degrees, gamma = 96.4950(11) degrees) as a result of a topotactic structural rearrangement. The fully dehydrated solid possesses permanent porosity with elliptical channels 8 A x 9 A in free diameter. The structural change results from the loss of water coordinated to the nickel cations, so that the nickel coordination changes from edge-sharing octahedral NiO5N to edge- and corner-sharing five-fold NiO4N. During this change, two out of three phosphonate groups rotate to become fully coordinated to nickel cations, leaving the remainder of the phosphonate groups coordinated to nickel cations by two oxygen atoms and with a P=O bond projecting into the channels. This transformation, which is completely reversible, causes substantial changes in both vibrational and electronic properties as shown by IR, Raman, and UV-visible spectroscopies. Complementary adsorption, calorimetric, and infrared studies of the probe adsorbates H2, CO, and CO2 reveal the presence of several distinct adsorption sites in the solid, which are attributed to their interactions with nickel cations which are weak Lewis acid sites, as well as with P=O groups that project into the pores. At 304 K, the adsorption isotherms and enthalpies of adsorption on dehydrated Ni-STA-12 have been measured for CO2 and CH4: Ni-STA-12 gives adsorption uptakes of CO2 of 2.5 mmol g(-1) at 1 bar, an uptake ca. 10 times that of CH4.  相似文献   

8.
Bao SS  Chen GS  Wang Y  Li YZ  Zheng LM  Luo QH 《Inorganic chemistry》2006,45(3):1124-1129
This paper reports the syntheses and crystal structures of a manganese and a uranyl phosphonate based on 1,4,7-triazacyclononane-1,4,7-triyl-tris(methylenephosphonic acid), namely, Mn3{C9N3H18(PO3)3}(H2O)6 x 1.5 H2O (1) and UO2{C9N3H19(PO3H)3} x H2O (2). Compound 1 shows a unique layer structure where the hydrophobic triazacyclononane moieties all reside on one side of the inorganic backbone of the manganese phosphonate layer while the hydrophilic coordinated water molecules reside on the other side. In compound 2, the triazacyclononane moieties are immobilized on the inorganic backbone of the uranyl phosphonate chains. The magnetic properties of compound 1 and the ion exchange properties of compound 2 have been studied.  相似文献   

9.
Using infrared spectroscopy and low electron energy diffraction, we have investigated the adsorption of N(2), at 30 K, on the Pt(111) and the Pt(111)(1x1)H surfaces. At monolayer coverage, N(2) orders in commensurate (3x3) structures on both surfaces, and we propose that the unit cells contain four molecules in each case. The infrared spectra reveal that N(2) exclusively physisorbs on the Pt(111)(1x1)H surface, while both physisorbed and chemisorbed N(2) is detected on the Pt(111) surface. Physisorbed N(2) is the majority species in the latter case, and the two adsorption states show an almost identical uptake behavior, which indicates that they are intrinsic constituents of the growing (3x3) N(2) islands. An analysis of the infrared absorbance data, based on a simple scaling concept suggested by density functional theory calculations, supports a model in which the (3x3) unit cell contains one chemisorbed molecule in end-on atop configuration and three physisorbed molecules. We note that a classic "pinwheel" structure on a hexagonal lattice, with the end-on chemisorbed N(2) molecules acting as "pins," is compatible with this composition.  相似文献   

10.
The structures, energetics, spectroscopies, and stabilities of the doublet [Si, C, N, O] radical are explored at the density functional theory and ab initio levels. Sixteen isomers are located, connected by 29 interconversion transition states. At the CCSD(T)/6-311+G(2df)//QCISD/6-311G(d)+ZPVE level, the lowest lying isomer is a linear SiNCO 1 (0.0 kcal/mol) mainly featuring a cumulene | . Si = N = C = O. The second and third low-lying isomers are bent OSiCN 2 (8.8) and bent OSiNC 3 (11.1), respectively. All the three low-lying isomers 1, 2, 3, and another high-lying species 5 (75.4) with a linear SiCNO structure are shown to have considerable kinetic stability and may be experimentally observable. The predicted results of isomers 1 and 2 are consistent with the previous mass spectrometry experiments. Moreover, the fourth low-lying species SiOCN 4 (23.9) with bent structure is expected to be observable in low-temperature environments. The bonding nature of the five isomers 1, 2, 3, 4, and 5 is analyzed. The calculated results are compared with those of the analogous molecules C(2)NO and Si(2)NO. Implications in interstellar space and N,O-doped SiC vaporization processes are also discussed.  相似文献   

11.
The interaction of atomic oxygen and nitrogen on the (0001) surface of corundum (alpha-alumina) is investigated from first-principles by means of periodic density functional calculations within the generalized gradient approximation. A large Al(2)O(3) slab model (18 layers relaxing 10) ended with the most stable aluminium layer is used throughout the study. Geometries, adsorption energies and vibrational frequencies are calculated for several stationary points for two spin states at different sites over an 1 x 1 unit cell. Two stable adsorption minima over Al or in a bridge between Al and O surface atoms are found for oxygen and nitrogen, without activation energies. The oxygen adsorption (e.g., E(ad) = 2.30 eV) seems to be much more important than for nitrogen (e.g., E(ad) = 1.23 eV). Transition states for oxygen surface diffusion are characterized and present not very high-energy barriers. The computed geometries and adsorption energies are consistent with similar adsorption theoretical studies and related experimental data for O, N or alpha-alumina. The present results along with our previous results for beta-cristobalite do not support the assumption of an equal E(ad) for O and N over similar oxides, which is commonly used in some kinetic models to derive catalytic atomic recombination coefficients for atomic oxygen and nitrogen. The magnitude of O and N adsorption energies imply that Eley-Rideal and Langmuir-Hinshelwood reactions with these species will be exothermic, contrary to what happens for beta-cristobalite.  相似文献   

12.
The hydrothermal reactions of a vanadium source, an appropriate diphosphonate ligand, and water in the presence of HF provide a series of compounds with neutral V-P-O networks as the recurring structural motif. When the {O3P(CH2)(n)PO3}4- diphosphonate tether length n is 2-5, metal-oxide hybrids of type 1, [V2O2(H2O){O3P(CH2)(n)PO3}] x xH2O, are isolated. The type 1 oxides exhibit the prototypical three-dimensional (3-D) "pillared" layer architecture. When n is increased to 6-8, the two-dimensional (2-D) "pillared" slab structure of the type 2 oxides [V2O2(H2O)4{O3P(CH2)6PO3}] is encountered. Further lengthening of the spacer to n = 9 provides another 3-D structure, type 3, constructed from the condensation of pillared slabs to give V-P-O double layers as the network substructure. When organic cations are introduced to provide charge balance for anionic V-P-O networks, oxides of types 4-7 are observed. For spacer length n = 3, a range of organodiammonium cations are accommodated by the same 3-D "pillared" layer oxovanadium diphosphonate framework in the type 4 materials [H3N(CH2)(n)NH3][V4O4(OH)2 {O3P(CH)3PO3}2] x xH2O [n = 2, x = 6 (4a); n = 3, x = 3 (4b); n = 4, x = 2 (4c); n = 5, x = 1 (4d); n = 6, x = 0.5 (4e); n = 7, x = 0 (4f)] and [H3NR]y[V4O4(OH)2 {O3P(CH)3PO3}2] x xH2O [R = -CH2(NH3)CH2CH3, y = 1, x = 0 (4g); R = -CH3, n = 2, x = 3 (4h); R = -CH2CH3, y = 2, x = 1 (4i); R = -CH2CH2CH3, y = 2, x = 0 (4j); cation = [H2N(CH2CH3)2], y = 2, x = 0 (4k)]. These oxides exhibit two distinct interlamellar domains, one occupied by the cations and the second by water of crystallization. Furthermore, as the length of the cation increases, the organodiammonium component spills over into the hydrophilic domain to displace the water of crystallization. When the diphosphonate tether length is increased to n = 5, structure type 5, [H3N(CH2)2NH3][V4O4(OH)2(H2O){O3P(CH2)5PO3}2] x H2O, is obtained. This oxide possesses a 2-D "pillared" network or slab structure, similar in gross profile to that of type 2 oxides and with the cations occupying the interlamellar domain. In contrast, shortening the diphosphonate tether length to n = 2 results in the 3-D oxovanadium organophosphonate structure of the type 7 oxide [H3N(CH2)5NH3][V3O3{O3P(CH2)2PO3}2]. The ethylenediphosphonate ligand does not pillar V-P-O networks in this instance but rather chelates to a vanadium center in the construction of complex polyhedral connectivity of 7. Substitution of piperazinium cations for the simple alkyl chains of types 4, 5, and 7 provides the 2-D pillared layer structure of the type 6 oxides, [H2N(CH2CH2)NH2][V2O2{O3P(CH)(n)PO3H}2] [n = 2 (6a); n = 4 (6b); n = 6 (6c)]. The structural diversity of the system is reflected in the magnetic properties and thermal behavior of the oxides, which are also discussed.  相似文献   

13.
朱必成  张留洋  程蓓  于岩  余家国 《催化学报》2021,42(1):115-122,后插10
气体分子与光催化剂之间的相互作用对于光催化反应的触发非常重要.对于TiO2,ZnO和WO3等传统金属氧化物光催化剂上的水分解反应而言,已有许多报道研究了水分子在它们表面的吸附行为.结果表明,水分子与催化剂表面的原子形成了O-H…O氢键.石墨相氮化碳(g-C3N4)是一种具有可见光响应且化学性质稳定的光催化剂,对其进行修饰以增强其分解水产氢性能的研究非常多.本文通过密度泛函理论计算,全面研究了水分子在均三嗪(s-triazine)基g-C3N4上的吸附情况.首先构建了一系列初始吸附模型,考察了各种吸附位和水分子的朝向.通过比较分析计算得到的吸附能,确定了一种最优的吸附构型,即水分子以竖直的朝向吸附于褶皱的单层g-C3N4表面.水分子中的一个极性O-H键与g-C3N4中一个二配位富电子的氮原子结合形成了分子间的O-H…N氢键.其中,H原子与N原子的间距为1.92?,O-H键的键长由0.976?增至0.994?.进一步通过计算Mulliken电荷,态密度和静电势曲线分析了该吸附体系的电子性质.结果发现在分子间氢键的桥接作用下,g-C3N4上的电子转移至水分子,由此导致g-C3N4的费米能级降低,功函数由4.21 eV增至5.30 eV.在该吸附模型的基础上,考查了不同的吸附距离.当水分子与g-C3N4的间距设为1至4?时,几何优化后总是能得到相同的吸附构型,吸附能和氢键长度也十分相近.随后,通过改变吸附基底g-C3N4的大小和形状,验证了这种吸附构型具有很强的重复性.将2′2单层g-C3N4吸附基底替换为2′2多层g-C3N4(2至5层),3′3和4′4单层g-C3N4,以及具有不同管径的单壁g-C3N4纳米管后,水分子的吸附能随着体系原子数的增多而增大,但吸附模型的几何结构和电子性质基本不变,包括O-H…N氢键的形成和键长,以及电子转移和增大的功函数.另外还研究了非金属元素(P,O,S,Se,F,Cl和Br)掺杂对吸附能的影响.构建模型时,杂质原子以取代二配位氮原子的方式进行掺杂,水分子放置于杂质原子上方.结果显示,引入杂质原子后水分子的吸附能增大,在理论上从吸附的角度解释了元素掺杂增强g-C3N4分解水活性.总之,本文揭示了一种在分子间氢键的作用下,具有高取向性的水分子吸附的g-C3N4构型,这有助于g-C3N4基光催化剂上水分解过程的理解和优化设计.  相似文献   

14.
A new three-dimensional chromium(III) naphthalene tetracarboxylate, CrIII3O(H2O)2F{C10H4(CO2)4}1.5.6H2O (MIL-102), has been synthesized under hydrothermal conditions from an aqueous mixture of Cr(NO3)3.9H2O, naphthalene-1,4,5,8-tetracarboxylic acid, and HF. Its structure, solved ab initio from X-ray powder diffraction data, is built up from the connection of trimers of trivalent chromium octahedra and tetracarboxylate moieties. This creates a three-dimensional structure with an array of small one-dimensional channels filled with free water molecules, which interact through hydrogen bonds with terminal water molecules and oxygen atoms from the carboxylates. Thermogravimetric analysis and X-ray thermodiffractometry indicate that MIL-102 is stable up to approximately 300 degrees C and shows zeolitic behavior. Due to topological frustration effects, MIL-102 remains paramagnetic down to 5 K. Finally, MIL-102 exhibits a hydrogen storage capacity of approximately 1.0 wt % at 77 K when loaded at 3.5 MPa (35 bar). The hydrogen uptake is discussed in relation with the structural characteristics and the molecular simulation results. The adsorption behavior of MIL-102 at 304 K resembles that of small-pore zeolites, such as silicalite. Indeed, the isotherms of CO2, CH4, and N2 show a maximum uptake at 0.5 MPa, with no further significant adsorption up to 3 MPa. Crystal data for MIL-102: hexagonal space group P(-)6 (No. 169), a = 12.632(1) A, c = 9.622(1) A.  相似文献   

15.
The structure and energetics of thin water overlayers on the (101) surface of TiO(2)-anatase have been studied through first-principles molecular dynamics simulations at T = 160 K. At one monolayer coverage, H(2)O molecules are adsorbed at the 5-fold Ti sites (Ti(5c)), forming an ordered crystal-like 2D layer with no significant water-water interactions. For an adsorbed bilayer, H(2)O molecules at both Ti(5c) and bridging oxygen (O(2c)) sites form a partially ordered structure, where the water oxygens occupy regular sites but the orientation of the molecules is disordered; in addition, stress-relieving defects are usually present. When a third layer is adsorbed, very limited parallel and perpendicular order is observed above the first bilayer. The calculated energetics of multilayer adsorption is in good agreement with recent temperature-programmed desorption data.  相似文献   

16.
The initial growth of a water (D2O) layer on (1 x 1)-oxygen-covered Ru(0001) has been studied in comparison with that on bare Ru(0001) by means of temperature-programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS). Although water molecules adsorbed on both bare and (1 x 1)-oxygen-covered Ru(0001) commonly tend to form hydrogen bonds with each other when mobility occurs upon heating, the TPD and IRAS measurements for the two surfaces exhibit distinct differences. On (1 x 1)-oxygen-covered Ru(0001), most of the D2O molecules were desorbed with a peak at 160 K, even at submonolayer coverage, as condensed water desorption. The vibration spectra of adsorbed D2O also showed broad peaks such as a condensed water phase, from the beginning of low coverage. For submonolayer coverage, in addition, we found a characteristic O-D stretching mode at around 2650 cm(-1), which is never clearly observed for D2O on bare Ru(0001). Thus, we propose a distinctive water adsorption structure on (1 x 1)-oxygen-covered Ru(0001) and discuss its influence on water layer growth in comparison with the case of D2O on bare Ru(0001).  相似文献   

17.
N2静态吸附容量法的测定结果表明,磷钨酸铯盐(CsxH3-xPW12O40)的孔窝和孔分布与x值的大小相关。x〈1.5的CsxH3-xPW12O40孔容相近,孔分布近似;当x〉1.5时,CsxH3-xPW12O40的孔主要是孔径小于10nm的中孔和微孔,平均孔径及孔容随x的增加而增大。SEM和TEM的观测结果表明,CsxH3-xPW12O40的孔是微细粒子堆积留下的空隙孔,可能不存在晶内孔。  相似文献   

18.
Relationships between structural parameters of MnO2 and their surface properties at the solid-gas interface were investigated. The studied series ranged from ramsdellite to pyrolusite and encompassed disordered gamma-MnO2 samples. The structural model used takes into account structural defects: Pr (rate of pyrolusite intergrowth in the ramsdellite network) and Tw (rate of microtwinning). Analysis of the N2 adsorption isotherm evidenced positive correlations between specific surface area and Tw for gamma-MnO2 only and between the energetic constant C and (1-Pr). No microporosity is evidenced. Water adsorption isotherms evidenced the dependence of the H2O monolayer volume on Tw and showed a positive correlation between the cross-section area of water molecules adsorbed in the first monolayer and Pr, ranging from 13.5 A2 for Pr=1 to 6.3 A2 for Pr=0.2 (12 sites/nm2). Energetic heterogeneity is quantified from Ar and N2 low-pressure adsorption isotherms with the DIS procedure and correlated with H2O adsorption. High-energy adsorption domains are quantified and assigned to the different crystal faces: (110) faces with a common 1 x 1 octahedra layer of pyrolusite and ramsdellite and the (001) face of ramsdellite with 2 x 2 octahedra on which channels and plateaus are differentiated. The specific surface area ratio of ramsdellite high-energy sites to total ramsdellite content is shown to depend on Tw. The dependence on microtwinning of low cross-sectional area of N2 and much lower cross-sectional of residual H2O molecules leads us to assume that their adsorption sites on grain boundaries are represented by the twin planes between the structured nanocrystals generated by oxygen evolution during MD synthesis.  相似文献   

19.
The adsorption states and growth process of the first water (D2O) layer on Rh(111) were investigated using infrared reflection absorption spectroscopy, temperature programed desorption, and spot-profile-analysis low energy electron diffraction. Water molecules wet the Rh(111) surface intact. At the early stage of first layer growth, a (square root 3 x square root 3)R30 degrees commensurate water layer grows where "up" and "down" species coexist; the up and down species represent water molecules which have free OD, pointing to a vacuum and the substrate, respectively. The up domain was a flatter structure than an icelike bilayer. Water desorption from Rh(111) was a half-order process. The activation energy and the preexponential factor of desorption are estimated to be 60 kJ/mol and 4.8 x 10(16) ML(1/2)/s at submonolayer coverage, respectively. With an increase in water coverage, the flat up domain becomes a zigzag layer, like an ice bilayer. At the saturation coverage, the amount of down species is 1.3 times larger than that of the up species. In addition, the activation energy and the preexponential factor of desorption decrease to 51 kJ/mol and 1.3 x 10(14) ML(1/2)/s, respectively.  相似文献   

20.
The reaction between Zn(NO3)2.6H2O and 5-aminoisophthalic acid (aip) in a mixture of diethylformamide (DEF) and ethanol resulted in [Zn(C8H5NO4)(C5H11NO)]n (CPO-8-DEF). This compound is composed of infinite 2D layers with tetrahedral Zn atoms and aip ligands in a triangular topology. The DEF molecules are bonded to Zn, and within each layer, the DEF molecules are oriented in the same direction, while in the subsequent layer, the DEF molecules are oriented in the opposite direction. By introduction of the pillaring ligands 4,4-bipyridine (BPY), 1,2-di-4-pyridylethylene (DPE), 1,2-di-4-pyridylethane (DPA), and 1,3-di-4-pyridylpropane (DPP) into mixtures of N,N'-dimethylformamide and water with Zn(NO3)2 and aip, we have successfully synthesized a series of related pillared bilayer compounds with the same common triangular Zn(aip) layer structural motif as that observed in CPO-8-DEF. The compounds are denoted as CPO-8-BPY ([Zn(C8H5NO4)(C10H8N2)(0.5)]n.3nH2O), CPO-8-DPE ([Zn(C8H5NO4)(C12H10N2)(0.5)]n.2.5nH2O), CPO-8-DPA ([Zn(C8H5NO4)(C12H12N2)(0.5)]n.2.5nH2O), and CPO-8-DPP ([Zn(C8H5NO4)(C13H14N2)(0.5)]n.3nH2O). In all cases, the pillars create spaces inside the bilayers that result in 1D channels running along the [010] directions with dimensions of 3.5 x 6.7 A(2). These channels contain water molecules that can be removed on heating to 150 degrees C, resulting in porous structures. The crystal structures of these porous high-temperature variants have been determined on the basis of powder X-ray diffraction data. All of the compounds show preferential adsorption of H2 over N2 at 77 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号