首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
2.
Summary An HPLC procedure is described for the determination of caffeine in pharmaceutical preparations. A Spherisorb octadecylsilane ODS-2 C18 analytical column and spectrophotometric detection at 273 nm were used. The chromatographic behaviour of caffeine with different micellar eluents containing sodium dodecyl sulphate (SDS) is described. The determination of caffeine in pharmaceutical preparations was performed by use of a mobile phase containing 0.05 M sodium dodecylsulphate (SDS) and 1.5% propanol at pH7. At a 6.0 g mL–1 concentration level the peak area and peak height repeatability were 2.6 and 2.4%, respectively. The application of the proposed method to the analysis of five pharmaceutical formulations, using peak heights as the dependent variable, gave recoveries between 85 and 104% of the values declared by the manufacturers. The proposed procedure for the determination of caffeine is rapid (15 min per sample), reliable and free from interferences.  相似文献   

3.
Summary An HPLC procedure for the determination of six local anesthetics, bupivacaine, lidocaine, mepivacaine, procaine, propanocaine and tetracaine, in pharmaceutical silane ODS-2 C18 analytical column and spectrophotometric detection at 230 nm were used. The chromatographic tographic behaviour of local anesthetics with different micellar eluents of sodium dodecyl sulphate (SDS) is described. Selection of the adequate composition of the micellar mobile phase (SDS and 1-propanol concentrations) for the analysis of pharmaceuticals was studied. Adequate retention was achieved with an eluent containing 0.15 M SDS +10% 1-propanol at pH 3. Application of the proposed method to the analysis of eight pharmaceutical formulations gave recoveries between 93 and 100.2% of the values declared by the manufacturers. The proposed procedure for the determination of local anesthetics is rapid, reliable and free from interferences.  相似文献   

4.
A method using an online solid-phase extraction (SPE) and ion-pairing liquid chromatography with electrospray tandem mass spectrometry (LC/ES-MS/MS) was developed for determination of amphetamine (Amp), methamphetamine (mAmp), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxyethylamphetamine (MDEA), and 3,4-methylenedioxymethamphetamine (MDMA) in urine samples. A SPE cartridge column with both hydrophilic and lipophilic functions was utilized for online extraction. A reversed-phase C18 LC column was employed for LC separation and MS/MS was used for detection. Trifluoroacetic acid was added to the mobile phase as an ion-pairing reagent. This method was fully automated and the extraction and analysis procedures were controlled by a six-port switch valve. Recoveries ranging from 85-101% were measured. Good linear ranges (10-500 ng/mL) for Amp and mAmp were determined. For MDA, MDMA and MDEA, dual linear ranges were obtained from 5-100 and 100-500 ng/mL, respectively. The detection limit of each analytical compound, based on a signal-to-noise ratio of 3, ranged from 1-3 ng/mL. The applicability of this newly developed method was examined by analyzing several urine samples from drug users. Good agreement was obtained between the results from this method and a literature GC/MS method.  相似文献   

5.
Nifedipine is a photosensitive compound that is converted into its 4-(2-nitrophenyl) pyridine and 4-(2-nitrosophenyl) pyridine homologue. In order to obtain the most adequate conditions for handling nifedipine solutions in the analytical laboratory, a number of studies on the decomposition of this compound were performed. A simple micellar liquid chromatographic procedure was described to determine nifedipine in different biological matrices such as serum and urine, and to control its decomposition. To perform the analysis, nifedipine was dissolved in 0.1 m SDS at pH 3 and chromatographed using a mobile phase containing 0.125 m SDS-3% pentanol, pH 3 on a C18 column and UV detection at 235 nm. The chromatographic analysis time was 8 min. The response of the drug for both biological matrices was linear in the 1-100 microg/mL range, with r2>0.997 at all times. Repeatability, intermediate precision (CV, %) and limits of quantification and detection (ng/mL) were 0.19, 4.3, 104 and 31 in serum and 0.81, 2.1, 136 and 41 in urine. The method developed here does not show interferences or matrix effects produced by endogenous compounds. Micellar media and mobile phases have the advantage of stabilising the compounds, thus preventing photodegradation and allowing the direct injection of biological samples.  相似文献   

6.
A super-modified simplex (SMS) method has been used to optimize the mobile phase used for separation of seven water-soluble vitamins in multivitamin tablets by gradient micellar liquid chromatography (MLC) with ultraviolet (UV) detection at 254, 295, and 361 nm. Effect of column temperature and addition of organic modifier to the mobile phase on separation efficiency were investigated: the appropriate conditions used were a temperature of 35 degrees C and 1-butanol modifier. The sodium dodecyl sulfate (SDS) concentration, pH, and 1-butanol% in the mobile phase were chosen for simultaneous optimization using the SMS method. The optimum mobile phase was found to be 16 mmol L(-1) (mM) SDS, 0.02 M phosphate buffer, pH 3.6, and a gradient of 3.5-10% (v/v) butanol. The total analysis time for vitamins was 75 min. The analytical parameters including linearity ( r>0.9970), limit of detection (0.12-50 micro g mL(-1)), precision of method (relative standard deviation (RSD) <8.90%), and accuracy obtained by the recovery assay (88-103%) support the usefulness of the proposed method for the determination of the water-soluble vitamins.  相似文献   

7.
Separation of six vitamers of vitamin B6 was performed by RP-HPLC using micellar mobile phase, UV and electrochemical detection. Effect of temperature, type and amount of organic modifier in mobile phase on efficiency and asymmetry factor showed that, the appropriate conditions were temperature of 35 degrees C and 3.0-5.0% (v/v) 1-butanol in mobile phase. Variations of selectivity factor versus 1-butanol concentration, pH of mobile phase, and SDS concentration was investigated and the following optimized conditions were selected for the separation: 3.0% (v/v) 1-butanol, pH=5.5 and 65 mM SDS in mobile phase. Electrochemical behavior of vitamers in optimized mobile phase was investigated using cyclic voltammetry, and potential of +1.2 V versus Ag/AgCl(Sat.) was chose as working potential. Finally, separation of B6 vitamers using UV detection at 254 nm and electrochemical detection at +1.2 V was compared.  相似文献   

8.
卢明华  李鑫  冯强  陈国南  张兰 《色谱》2010,28(3):253-259
采用自制的新型有机聚1-十六碳烯-三羟甲基丙烷三甲基丙烯酸酯[poly(1-hexadecene-co-TMPTMA)]整体柱,建立了一种同时分离检测6种利尿剂(氯噻酮、氢氯噻嗪、美托拉宗、吲哒帕胺、坎利酮和螺内酯)的毛细管电色谱(CEC)新方法,并成功应用于志愿者实际尿样的分析测定。在最佳实验条件下,6种利尿剂包含2种中性物质(坎利酮和螺内酯)和2种同分异构体(美托拉宗和吲哒帕胺)在11.0 min内得到基线分离,柱效分别达到218000、176000、143000、121000、108000、103000 塔板/m。6种利尿剂在1.15~86.0 μg/mL范围内呈良好的线性关系,相关系数R2 ≥0.990 8,检出限(LOD)在0.35~0.65 μg/mL范围内,回收率为81.9%~105%,相对标准偏差(RSD)小于4.7%。结果表明,实验所建立的基于poly(1-hexadecene-co-TMPTMA)整体柱的CEC方法,具有良好的重复性和稳定性,能够实现对多种利尿剂的同时分离检测。该方法已成功应用于来自志愿者实际尿样的分析,该方法可以用于利尿剂类药物的初筛。  相似文献   

9.
Analysis of tobramycin faces challenges owing to its significant basicity, hydrophilicity and lack of a UV absorbing chromophore. Chromatographic methods, coupled with derivatization to introduce chromophores for tobramycin analysis, were extensively studied. A direct reversed-phase HPLC method for tobramycin analysis has not been reported. Here, we would like to report a simple LC/MS method for quantitative analysis of tobramycin in pharmaceutical formulations. Reversed-phase HPLC analysis of tobramycin was achieved using a pH stable C18 column with basic (pH 11) aqueous mobile phase (ammonium hydroxide buffer), while direct detection was carried out employing a single quadruple mass detector in negative mode via electrospray ionization. This unique separation-detection combination provided simple and specific determination of tobramycin. This method was found to be linear at a tobramycin concentration range of 0.2-0.8 mg/mL with a correlation coefficient value of 0.999. The quantitation limit and detection limit were calculated as 0.210 and 0.063 μg/mL, respectively, with 99.994% confidence. This method was successfully applied to measure tobramycin content in matrices containing tobramycin and other pharmaceutical formulation ingredients. Recoveries of 101.8, 97.8 and 106.7% were obtained for tobramycin spiked in the pharmaceutical formulation at concentrations of 1.68, 1.0 and 0.35 mg/mL, respectively. The relative standard deviations for six injections of spiked samples ranged from 0.2 to 3.2%, indicating good method repeatability.  相似文献   

10.
A new, simple, rapid and specific micellar liquid chromatographic (MLC) method was developed and validated for the determination of amoxicillin, ampicillin, cloxacillin and dicloxacillin in pharmaceutical formulations. Separation was achieved isocratically on an Ultra C18 column (150 mm × 4.6 mm) utilizing a mobile phase of 25 mM SDS–2% (v/v) 1-butanol in phosphate buffer (pH 5.0) at a flow rate of 1.0 mL min?1 with UV detection at 200 nm. Validation experiments were performed to demonstrate linear ranges, accuracy, precision, robustness, limit of detection (LOD) and limit of quantification (LOQ). The method was applied to the determination of these penicillins in various pharmaceutical formulations. The results compared favorably with those obtained by the official methods, and were in agreement with the declared compositions. The method can be used for quality control assay of the studied penicillins.  相似文献   

11.
Fanali S  Pucci V  Sabbioni C  Raggi MA 《Electrophoresis》2000,21(12):2432-2437
In modern practice, the treatment of Parkinson's disease and syndrome is carried out using pharmaceutical formulations containing a combination of levodopa and a decarboxylation inhibitor (carbidopa or benserazide). Two pharmaceutical formulations were quantified by capillary zone electrophoresis using two procedures which differed only in the kind of background electrolyte used. One procedure used a 25 mM phosphate buffer, pH 2.5, while the second one used a 25 mM borate buffer, pH 8.5. The electrophoretic analysis was carried out using an uncoated fused- silica capillary, a separation voltage of 20 kV with currents typically less than 60 microA, and spectrophotometric detection at 205 nm. Calibration curves were performed for levodopa (concentration range 1-100 microg/mL), for carbidopa and benserazide (1-50 microg/mL), and the plots of the peak area versus concentration were found to be linear with a correlation coefficient better than 0.9990. Satisfactory results were obtained when commercial tablets were analyzed in terms of accuracy (98-102%), repeatability (0.6-2.0%), and intermediate precision (1.1-2.6%).  相似文献   

12.
A reliable micellar electrokinetic capillary chromatographic method was developed and validated for the determination of lamotrigine and its metabolites in human plasma and urine. The variation of different parameters, such as pH of the background electrolyte (BGE) and Sodium dodecyl sulfate (SDS) concentration, were evaluated in order to find optimal conditions. Best separation of the analytes was achieved using a BGE composed of 10 mM borate and 50 mM SDS, pH 9.5; melatonin was selected as the internal standard. Isolation of lamotrigine and its metabolites from plasma and urine was accomplished with an original solid-phase extraction procedure using hydrophilic-lypophilic balance cartridges. Good absolute recovery data and satisfactory precision values were obtained. The calibration plots for lamotrigine and its metabolites were linear over the 1-20 microg/mL concentration range. Sensitivity was satisfactory; the limits of detection and quantitation of lamotrigine were 500 ng/mL and 1 microg/mL, respectively. The application of the method to real plasma samples from epileptic patients under therapy with lamotrigine gave good results in terms of accuracy and selectivity, and in agreement with those obtained with an high-performance liquid chromatography (HPLC) method.  相似文献   

13.
An RP-HPLC method for simultaneous separation and quantification of pantoprazole and its five main impurities in pharmaceutical formulations was developed and validated. The separation was accomplished on a Zorbax Eclipse XDB C18 column (5 microm particle size, 150 x 4.6 mm id) using a gradient with mobile phase A [buffer-acetonitrile (70 + 30, v/v)], and mobile phase B [buffer-acetonitrile (30 + 70, v/v)]. The buffer was 0.01 M ammonium acetate solution with addition of 1 mL triethylamine/L of the solution, adjusted to pH 4.5 with orthophosphoric acid. The eluent flow rate was 1 mL/min, the temperature of the column was 30 degrees C, and the eluate was monitored at 290 nm. Linearity (r = 0.999), recovery (97.6-105.8%), RSD (0.55-1.90%), and LOQ (0.099-1.48 microg/mL) were evaluated and found to be satisfactory. The proposed method can be used for simultaneous identification and quantification of the analyzed compounds in pharmaceutical formulations.  相似文献   

14.
A rapid, simple, and accurate ion-pair RPLC method has been developed for simultaneous analysis of vitamin C and major B-complex vitamins. An RP C18 column thermostated at 30 degrees C was used with gradient elution of mobile phase comprising 10 mM potassium dihydrogen phosphate buffer (containing 3 mM sodium hexane-1-sulfonate, adjusted to pH 2.80 with o-phosphoric acid) and methanol at a flow rate of 1.0 mL/min to achieve the best possible separation and resolution of all vitamins in about 11.00 min. The detection was performed at 274 nm. The method has been implemented successfully for simultaneous determination of vitamins present in 12 multivitamin/multimineral pharmaceutical preparations, as well as in human urine. Typical validation characteristics were evaluated in accordance with International Conference on Harmonization guidelines. Good linearity over the investigated concentration levels was observed. Intraday repeatability was < or = 2.0%, and interday variation was < or = 2.6%, for all vitamins. The method can be used for assay of these vitamins over a wide concentration range with good precision and accuracy; hence, it would be appropriate for routine QC as well as in clinical analysis.  相似文献   

15.
With polyamide( PA)as an efficient sorbent for solid phase extraction( SPE)of Sudan dyes II,III and Red 7B from saffron and urine,their determination by HPLC was performed. The optimum conditions for SPE were achieved using 7 mL methanol/water( 1:9,v/v,pH 7)as the washing solvent and 3 mL tetrahydrofu-ran for elution. Good clean-up and high( above 90%)recoveries were observed for all the analytes. The opti-mized mobile phase composition for HPLC analysis of these compounds was methanol-water( 70:30,v/v). The SPE parameters,such as the maximum loading capacity and breakthrough volume,were also determined for each analyte. The limits of detection( LODs),limits of quantification( LOQs),linear ranges and recoveries for the analytes were 4. 6-6. 6 μg/L,13. 0-19. 8 μg/L,13. 0-5 000 μg/L( r2> 0. 99)and 92. 5% -113. 4%,respec-tively. The precisions( RSDs)of the overall analytical procedure,estimated by five replicate measurements for Sudan II,III and Red 7B in saffron and urine samples were 2. 3%,1. 8% and 3. 6%,respectively. The developed method is simple and successful in the application to the determination of Sudan dyes in saffron and urine sam-ples with HPLC coupled with UV detection.  相似文献   

16.
A green chromatographic analytical method for determination of fat-soluble vitamins (A, E, D3 and K1) in food and pharmaceutical supplement samples is proposed. The method is based on the modification of a C18 column with a 3.00% (w/v) sodium dodecyl sulphate (SDS) aqueous solution at pH 7 (0.02 mol L(-1) phosphate buffer solution) and in the usage of the same surfactant solution as mobile phase with the presence of 15.0% (v/v) butyl alcohol as an organic solvent modifier. After the separation process, the vitamins are detected at 230 nm (K1, D3 and E), 280 nm (A, E, D3 and K1) and 300 nm (K1, D3 and E). The chromatographic procedure yielded precise results (better than 5%) and is able to run one sample in 25 min, consuming 1.5 g of SDS, 90 mg of phosphate and 7.5 mL of butyl alcohol. When the flow rate of the mobile phase is 2 mL min(-1) the retention times are 4.0, 9.6, 13.0 and 22.7 min for D3, A, E and K1 vitamins, respectively; and all peak resolutions are higher than 2. The analytical curves present the following linear equations: area=6290+34852 (vitamin A), R2=0.9998; area=4092+36333 (vitamin E), R2=0.9997; area=-794+30382 (vitamin D3) R2=0.9998 and area=-7175+82621 (vitamin K1), R2=0.9996. The limits of detection and quantification for vitamins A, E, D(3) and K(1) were estimated for a test pharmaceutical vitamin supplement sample as 0.81, 1.12, 0.91 and 0.83 mg L(-1) and 2.43, 3.36, 2.73 and 2.49, respectively. When the proposed method was applied to food and pharmaceutical sample analysis, precise results were obtained (R.S.D.<5% and n=3) and in agreement with those obtained by using the classical chromatographic method that uses methanol and acetonitrile as mobile phase. Here, the traditional usage of toxic organic solvent as mobile phase is avoided, which permits to classify the present method as green.  相似文献   

17.
Felix FS  Brett CM  Angnes L 《Talanta》2008,76(1):128-133
Flow injection analysis (FIA) using a carbon film sensor for amperometric detection was explored for ambroxol analysis in pharmaceutical formulations. The specially designed flow cell designed in the lab generated sharp and reproducible current peaks, with a wide linear dynamic range from 5x10(-7) to 3.5x10(-4) mol L(-1), in 0.1 mol L(-1) sulfuric acid electrolyte, as well as high sensitivity, 0.110 Amol(-1) L cm(-2) at the optimized flow rate. A detection limit of 7.6x10(-8) mol L(-1) and a sampling frequency of 50 determinations per hour were achieved, employing injected volumes of 100 microL and a flow rate of 2.0 mL min(-1). The repeatability, expressed as R.S.D. for successive and alternated injections of 6.0x10(-6) and 6.0x10(-5) mol L(-1) ambroxol solutions, was 3.0 and 1.5%, respectively, without any noticeable memory effect between injections. The proposed method was applied to the analysis of ambroxol in pharmaceutical samples and the results obtained were compared with UV spectrophotometric and acid-base titrimetric methods. Good agreement between the results utilizing the three methods and the labeled values was achieved, corroborating the good performance of the proposed electrochemical methodology for ambroxol analysis.  相似文献   

18.
A precise and feasible HPLC method has been developed for the analysis of amphetamine (AMPH), methamphetamine (MAMPH) and methylenedioxymethamphetamine (MDMA, ecstasy) in human urine. A chromatographic run on a C8 Genesis (150 mm x 4.6 mm, 5 microm) column maintained at 30 degrees C lasts about 17 min, using a mobile phase composed of ACN (12%) and a pH 2.5 phosphate buffer (88%) containing 0.3% triethylamine. Mirtazapine was used as the internal standard. Good linearity was found in the 100-2000 ng/mL concentration range for AMPH and MAMPH and in the 12-2000 ng/mL concentration range for MDMA. The pretreatment of urine samples was carried out by means of a careful SPE procedure on C2 cartridges. The extraction yields were very satisfactory for all analytes, with average values greater than 97%. The leading conditions allowed the determination of AMPH, MAMPH and MDMA with satisfactory precision and accuracy. The method has been successfully applied to the determination of the analytes in urine of AMPH users.  相似文献   

19.
A simple and highly sensitive ultra‐high‐performance liquid chromatographic–diode array (UHPLC‐DAD) detection method was developed and validated for the simultaneous estimation of levetiracetam (LEV) and lacosamide (LAC). It was clinically proven that the combination of LEV and LAC exhibits a synergistic effect against refractory seizures in mice, which was the motivation for the analysis of this binary mixture both in bulk and in human urine samples. The binary mixture was resolved on a Hypersil BDS C18 analytical column, utilizing a mobile phase of 0.050 mol L?1 phosphate buffer (pH 5.60), methanol and acetonitrile in the ratio (80:10:10 v/v/v) using catechol as an internal standard. The mobile phase was pumped at a flow rate of 1.2 mL min?1 with diode array detection at 205 nm for both drugs and 270 nm for IS. Calibration curves were linear with correlation coefficient >0.9990 over the studied concentration range of 0.1–70.0 μg mL?1 for both drugs. The developed method was reproducible with low relative standard deviation values for intra‐ and inter‐day precision (<2.0%). Both drugs were determined in bulk, pharmaceutical formulations and human urine samples without any interference from complex matrices.  相似文献   

20.
The properties of the eluent are the essential factors governing the efficiency in the high-performance liquid chromatography (HPLC) method. A novel approach in retention modelling in the liquid chromatographic separation of fosinopril sodium and its degradation product, fosinoprilat, applying a microemulsion as the mobile phase, was used. The modifications of the mobile phase included the changes to the type of the lipophilic phase, the type and concentration of co-surfactant and surfactant, as well as the pH of the mobile phase. In this study, a full factorial 23 design, as the optimal method for screening of the experiment, was applied for selecting factors which had an influence on separation. Optimisation was done by a central composite design. An appropriate resolution with reasonable retention times was obtained with a microemulsion containing 0.9% w/w of cyclohexane, 2.2% w/w of sodium dodecyl sulphate (SDS), 8.0% w/w of n-butanol and 88.9% of aqueous 25 mM disodium phosphate, the pH of which was adjusted to 2.8 with 85% orthophosphoric acid. Separations were performed on an X-Terra 50-mm×4.6-mm, 3.5-μm particle size column at 30°C. UV detection was performed at 220 nm and with a flow rate of 0.3 mL min−1. The established method was validated and applied for analysis of appropriate tablets. The proposed chromatographic procedure for the separation of fosinopril sodium and its degradation product is less expensive compared with the conventional reversed-phase HPLC method, as well as being simple and rapid. The optimised and validated method can be used for separation, identification and simultaneous determination of fosinopril sodium and fosinoprilat in bulk drug and in pharmaceutical dose forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号