首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An extracellular lipase from Fusarium solani strain (F. solani lipase (FSL)) was purified to homogeneity by ammonium sulphate precipitation, gel filtration and anion exchange chromatography. The purified enzyme has a molecular mass of 30 kDa as estimated by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The 12 NH2-terminal amino acid residues showed a high degree of homology with a putative lipase from the fungus Necteria heamatoccocae. It is a serine enzyme, like all known lipases from different origins. Interestingly, FSL has not only lipase activity but also a high phospholipase activity which requires the presence of Ca2+ and bile salts. The specific activities of FSL were about 1,610 and 2,414 U/mg on olive oil emulsion and egg-yolk phosphatidylcholine as substrates, respectively, at pH 8.0 and 37 °C. The (phospho)lipase enzyme was stable in the pH range of 5–10 and at temperatures below 45 °C.  相似文献   

2.
The coconut kernel-associated fungus, Lasiodiplodia theobromae VBE1, was grown on coconut cake with added coconut oil as lipase inducer under solid-state fermentation conditions. The extracellular-produced lipases were purified and resulted in two enzymes: lipase A (68,000 Da)—purified 25.41-fold, recovery of 47.1%—and lipase B (32,000 Da)—purified 18.47-fold, recovery of 8.2%. Both lipases showed optimal activity at pH 8.0 and 35 °C, were activated by Ca2+, exhibited highest specificity towards coconut oil and p-nitrophenyl palmitate, and were stable in iso-octane and hexane. Ethanol supported higher lipase activity than methanol, and n-butanol inactivated both lipases. Crude lipase immobilized by entrapment within 4% (w/v) calcium alginate beads was more stable than the crude-free lipase preparation within the range pH 2.5–10.0 and 20–80 °C. The immobilized lipase preparation was used to catalyze the transesterification/methanolysis of coconut oil to biodiesel (fatty acyl methyl esters (FAMEs)) and was quantified by gas chromatography. The principal FAMEs were laurate (46.1%), myristate (22.3%), palmitate (9.9%), and oleate (7.2%), with minor amounts of caprylate, caprate, and stearate also present. The FAME profile was comparatively similar to NaOH-mediated transesterified biodiesel from coconut oil, but distinctly different to petroleum-derived diesel. This study concluded that Lasiodiplodia theobromae VBE1 lipases have potential for biodiesel production from coconut oil.  相似文献   

3.
An extracellular alkalophilic lipase was partially purified from heterotrophic Shewanella algae (KX 272637) associated with marine macroalgae Padina gymnospora. The enzyme possessed a molecular mass of 20 kD, and was purified 60-fold with a specific activity of 36.33 U/mg. The enzyme exhibited Vmax and Km of 1000 mM/mg/min and 157 mM, respectively, with an optimum activity at 55 °C and pH 10.0. The catalytic activity of the enzyme was improved by Ca2+ and Mg2+ ions, and the enzyme showed a good tolerance towards organic solvents, such as methanol, isopropanol, and ethanol. The purified lipase hydrolyzed the refined liver oil from leafscale gulper shark Centrophorus squamosus, yielding a total C20-22 n-3 PUFA concentration of 34.99% with EPA + DHA accounting the major share (34% TFA), after 3 h of hydrolysis. This study recognized the industrial applicability of the thermostable and alkalophilic lipase from marine macroalga-associated bacterium Shewanella algae to produce enriched C20-22 n-3 polyunsaturated fatty acid concentrate.  相似文献   

4.
A halotolerant Virgibacillus alimentarius LBU20907 isolated from fermented fish (Budu) was found to be an efficient producer of extracellular halophilic lipase enzyme. The enzyme was purified 5.99-fold with a 0.15% final yield to homogeneity by ammonium sulfate precipitation, followed by dialysis, Toyopearl DEAE-650 M ion exchange chromatography, Toyopearl butyl-650 M hydrophobic interaction chromatography, and Toyopearl-HW 55 F gel filtration chromatography. SDS-PAGE of purified lipase exhibited a homogenous single band with a very high molecular weight of 100 kDa. The properties of purified lipase revealed maximum activity at pH 7.0 and 40 °C. It was also highly stable in a pH range of 6.0–7.0, retaining more than 90% activity for 24 h. It was stable at the temperature of 30–50 °C and maintained more than 80% activity for 16 h. The purified lipase performing the maximal activity in the presence of 20.0% NaCl indicated halophilic enzyme properties. Its lipolytic activity was highest against p-nitrophenyl palmitate. The lipase activity was found to be enhanced in hexane. The enzyme activity was stimulated in the presence of Zn2+, Ca2+, Mg2+, and Sr2+; while, it was completely inhibited by Ba2+ and Co2+. The enzyme had a K m and V max of 108.0 mg and 79.1 U mL?1, respectively.  相似文献   

5.
A novel cold-adapted lipase (designated as LipYY31) was obtained from a psychrotrophic Pseudomonas sp. YY31. The strain YY31 was gram-negative, rod shaped, motile by means of one polar flagellum, and exhibited chemotaxis toward oil droplets under a microscope. The strain displayed remarkable degradation of edible oil and fat even at 5 °C. The LipYY31 DNA fragment contains an open reading frame of 1,410 bp which encoded a protein of 470 amino acids with an estimated molecular mass of 49,584 Da. LipYY31 showed high sequence similarity to those of subfamily Ι.3 lipase and had a conserved GXSXG motif around the catalytic Ser residue. Its optimal temperature was 25–30 °C, and it retained 20–40 % of its activity at 0–5 °C. The optimal pH value was 8.0. The activity was strongly inhibited by Cd2+, Zn2+, EDTA and was highly dependent on Ca2+. Tricaprin and p-nitrophenyl caprate were the most favorable substrates among the triglycerides and p-nitrophenyl esters, respectively. LipYY31 also had high activity towards natural substrates including edible vegetable oils and animal fat. Furthermore, LipYY31 was very active and stable in the presence of several detergents and organic solvents. In particular, the lipase exhibited high stability against organic solvents such as methanol, ethanol, and isopropanol.  相似文献   

6.
An extracellular lipase-producing fungus was isolated from oil-rich soil. This fungus belongs to the genus Rhizopus and clades with Rhizopus oryzae. Lipase was purified to homogeneity from this novel fungal source using ammonium sulphate precipitation followed by Q-Sepharose chromatography. The extracellular lipase was purified 8.6–fold, and enzymatic properties were studied. The molecular mass of the purified enzyme was estimated to be 17 kD by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and 16.25 kD by matrix-assisted laser desorption ionization/time-of-flight analysis. The native molecular mass was estimated to be 17.5 kD by gel filtration, indicating the protein to be monomer. The optimum pH and temperature for the enzyme catalysis were 7.0 °C and 40 °C, respectively. Enzyme was stable in pH range 6.0–7.0 and retains 95–100% activity when incubated at 50 °C for 1 h. The pI of the purified lipase was 4.2. Enzyme was stable in the organic solvents such as ethanol, hexane and methanol for 2 h. Purified enzyme was used for transesterification of oleic acid in the presence of ethanol for production of oleic acid ethyl ester with a conversion efficiency of 66% after 24 h at 30 °C.  相似文献   

7.
This study presents the production of biodiesel from algae oil by transesterification using thermophilic microorganism. The microorganism used in this study was isolated from the soil sample obtained near the furnace. The organism was identified as Bacillus sp., and the lipase obtained was purified by ammonium sulfate precipitation and ion exchange chromatography leading to 8.6-fold purification and 13% recovery. Molecular weight of the enzyme was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and it was found to be 45 kDa. The effect of pH, temperature, and solvent addition on lipase activity was investigated. The enzyme showed maximum activity at 55 °C and at pH 7 and was also found to be highly active in the presence of organic solvents such as hexane and t-butanol. The isolated lipase was successfully used for the production of biodiesel. The transesterification activity of the isolated lipase showed 76% of fatty acid methyl esters yield in 40 h, which indicated that this enzyme can be used as a potential biocatalyst for the biodiesel production.  相似文献   

8.
Staphylococcus sp. WL1 lipase (LipFWS) was investigated for methanolysis of crude palm oil (CPO) at moderate temperatures. Experiments were conducted in the following order: searching for the suitable bacterium for producing lipase from activated sludge, sequencing lipase gene, identifying lipase activity, then synthesising CPO biodiesel using the enzyme. From bacterial screening, one isolated specimen which consistently showed the highest extracellular lipase activity was identified as Staphylococcus sp. WL1 possessing lipFWS (lipase gene of 2,244 bp). The LipFWS deduced was a protein of 747 amino acid residues containing an α/β hydrolase core domain with predicted triad catalytic residues to be Ser474, His704 and Asp665. Optimal conditions for the LipFWS activity were found to be at 55 °C and pH 7.0 (in phosphate buffer but not in Tris buffer). The lipase had a K M of 0.75 mM and a V max of 0.33 mM?min?1 on p-nitrophenyl palmitate substrate. The lyophilised crude LipFWS performed as good as the commonly used catalyst potassium hydroxide for methanolysis of CPO. ESI-IT-MS spectra indicated that the CPO was converted into biodiesel, suggesting that free LipFWS is a worthy alternative for CPO biodiesel synthesis.  相似文献   

9.
Studies on lipase production and characterization were carried out with a bacterial strain Staphylococcus arlettae JPBW-1 isolated from rock salt mine, Darang, HP, India. Higher lipase activity has been obtained using 10 % inoculum with 5 % of soybean oil as carbon source utilizing a pH 8.0 in 3 h at 35 °C and 100 rpm through submerged fermentation. Partially purified S. arlettae lipase has been found to be active over a broad range of temperature (30–90 °C), pH (7.0–12.0) and NaCl concentration (0–20 %). It has shown extreme stability with solvents such as benzene, xylene, n-hexane, methanol, ethanol and toluene up to 30 % (v/v). The lipase activity has been found to be inhibited by metal ions of K+, Co2+ and Fe 2+ and stimulated by Mn2+, Ca2+ and Hg2+. Lipase activity has been diminished with denaturants, but enhanced effect has been observed with surfactants, such as Tween 80, Tween 40 and chelator EDTA. The K m and V max values were found to be 7.05 mM and 2.67 mmol/min, respectively. Thus, the lipase from S. arlettae may have considerable potential for industrial application from the perspectives of its tolerance towards industrial extreme conditions of pH, temperature, salt and solvent.  相似文献   

10.
Purification and characterization of a chymosin from Rhizopus microsporus var. rhizopodiformis were investigated in the present study. A newly isolated R. microsporus var. rhizopodiformis F518 produced a high level of milk-clotting activity (1,001 SU/mL). A chymosin from the fungus was purified 3.66-fold with a recovery yield of 33.2 %. The enzyme appeared as a single protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a molecular mass of 37.0 kDa. It was optimally active at 60 °C and was stable up to 40 °C. The purified enzyme was an acid protease with an optimum pH of 5.2 and retained 80 % of residual activity within pH 2.0–8.0. The inhibition of 96 and 100 % by pepstatin A at 0.01 and 0.02 mM, respectively, revealed that the enzyme is an aspartic protease. Thus, high milk-clotting activity of the chymosin with good stability will strengthen the potential use of the chymosin as a substitute for calf rennet in cheese manufacturing.  相似文献   

11.
The hydrolysis of triglycerides at the oil–water interface, synthesis of esters and transesterification in microaqueous conditions are catalysed by lipase. For its application, a proper purification method was necessary. This study examined the application of an aqueous two-phase system to partition porcine pancreatic lipase. The influence of molecular weight and concentration of polyethylene glycol (PEG), tie line length (TLL), potassium phosphate concentration, sodium chloride (NaCl) addition and temperature in the partition was studied. The enzyme was more efficiently purified in PEG 8,000 at 14.5 °C (PF?=?3.89-fold), presenting more recoveries at the top phase with shorter TLL and lower concentrations of PEG and potassium phosphate. Moreover, the increase of these variables repressed the purification and the further addition of NaCl did not promote the purification of the enzyme. These results demonstrated the efficiency of the aqueous two-phase system on lipase purification.  相似文献   

12.
Biochemical characterization of purified ANCUT2 cutinase from Aspergillus nidulans is described. The identified amino acid sequence differs from that predicted in Aspergillus genomic databases in amino acids not relevant for catalysis. The enzyme is thermo-alkaline, showing its maximum activity at pH 9 and 60 °C, and it retains more than 60% of its initial activity after incubation for 1 h at 60 °C for pH values between 6 and 10. ANCUT2 is more active towards long-chain esters and it hydrolyzes cutin; however, it also hydrolyzes short-chain esters. Cutinase is inhibited by metal ions, PMSF, SDS, and EDTA (10 mM). It retains 50% of its activity in most of the solvents tested, although it is more stable in hydrophobic solvents. According to its found biochemical properties, preliminary assays demonstrate its ability to synthesize methyl esters from sesame oil and the most likely application of this enzyme remains in detergent formulations.  相似文献   

13.
A 1,080-bp cDNA (CGMCC 2873) encoding of a cold-active lipase of Aspergillus fumigatus (AFL67) was cloned and expressed in Escherichia coli for the first time. The new lipase, AFL67, was one-step purified by 8.30 folds through Ni?CNTA affinity chromatography with a recovery of 86.8?%. The specific activity of purified AFL67 was 449?U?mg?1 on p-NP hexanoate. AFL67 preferentially hydrolyzed p-nitrophenyl esters of short- and medium-chain fatty acids, with p-nitrophenyl hexanoate the maximum. The optimum temperature and pH was 15?°C and 7.5, respectively. The purified AFL67 was stable at 10?C25?°C for 30?min, and in the pH range of 6.0?C9.0 for 16?h (at 4?°C). Its activity was increased by 47 and 50?%, in the presence of 10?% (v/v) ethanol and isopropanol, respectively. The new lipase AFL67 highly enantioselectively deacylated (S)-??-acetoxyphenylacetic acid (APA) and o-Cl-APA, m-Cl-APA, and p-Cl-APA to (S)-mandelic acid and its derivates. These features render this cold-active novel lipase AFL67 attractive for biotechnological applications in the field of enantioselective synthesis of chiral mandelic acids, o-acylated mandelic acids, and their derivates and detergent additives.  相似文献   

14.
A new organic solvent-tolerant strain Bacillus megaterium AU02 which secretes an organic solvent-tolerant protease was isolated from milk industry waste. Statistical methods were employed to achieve optimum protease production of 43.6 U/ml in shake flask cultures. The productivity of the protease was increased to 53 U/ml when cultivated under controlled conditions in a 7-L fermentor. The protease was purified to homogeneity by a three-step process with 24 % yield and specific activity of 5,375 U/mg. The molecular mass of the protease was found to be 59 kDa. The enzyme was active over a wide range of pH (6.0–9.0), with an optimum activity at pH 7.0 and temperature from 40 to 70 °C having an optimum activity at 50 °C. The thermal stability of the enzyme increased significantly in the presence of CaCl2, and it retained 90 % activity at 50 °C for 3 h. The K m and V max values were determined as 0.722 mg/ml and 0.018 U/mg respectively. The metalloprotease exhibited significant stability in the presence of organic solvents with log P values more than 2.5, nonionic detergents and oxidising agent. An attempt was made to test the synthesis of aspartame precursor (Cbz-Asp-Phe-NH2) which was catalysed by AU02 protease in the presence of 50 % DMSO. These properties of AU02 protease make it an ideal choice for enzymatic peptide synthesis in organic media.  相似文献   

15.
A strain of Bacillus amyloliquefaciens KUB29 was identified by 16S ribosomal RNA sequencing (Genbank: MF772779.1). Production of thermostable protease, amylase and lipase were done by the isolated strain. The produced enzymes were partially purified by ammonium precipitation followed by dialysis process. Protease and lipase enzymes are effectively used in bio-oil extraction from proteinaceous sample followed by transesterification to produce methyl ester. Amylase enzyme is widely used in food and laundry industry. The produced enzymes are active at thermophilic condition of 55 °C. Use of these enzymes in biofuel production process will make the process cleaner and greener.  相似文献   

16.
Environmental DNA from soil and water samples was extracted to construct a plasmid library and a fosmid library containing 19,500 and 20,400 clones, respectively. Two esterases (EstP2K and EstF4K) were finally isolated from each library based on activity screening, and both of them were characterized in this study. The esterase EstF4K consists of 396 amino acids with an SMTK motif which belongs to family VIII esterase/lipase. The amino acid sequence of EstF4K showed 83 % identity with that of EstA3, a reported esterase isolated from uncultured organisms of soil. EstP2K is composed of 224 amino acids in size and shows only 37 % identity with a putative lipase of Neisseria elongata subsp. The purified EstF4K was optimally active at pH?8.0 and 50 °C. It was remarkably active and very stable in the presence of 30 % dimethyl sulfoxide. Activity fingerprint of EstF4K displayed a higher level of activity toward short-chain fatty acid p-nitrophenyl (pNP) esters, while EstP2K preferred bias for pNP caprylate ester. The optimum reaction temperature and pH for EstP2K are 45 °C and 7.5, respectively, and the enzyme exhibited strong tolerance in the presence of 30 % methanol. EstF4K and EstP2K showed opposite enantioselectivity for methyl 3-phenylglycidate, a chiral synthon for the synthesis of Taxol® side chain.  相似文献   

17.
A fungal strain isolated from rotten banana and identified as Aspergillus alliaceus was found capable of producing thermostable extracellular ??-galactosidase enzyme. Optimum cultural conditions for ??-galactosidase production by A. alliaceus were as follows: pH?4.5; temperature, 30?°C; inoculum age, 25?h; and fermentation time, 144?h. Optimum temperature, time, and pH for enzyme substrate reaction were found to be 45?°C, 20?min, and 7.2, respectively, for crude and partially purified enzyme. For immobilized enzyme?Csubstrate reaction, these three variable, temperature, time, and pH were optimized at 50?°C, 40?min, and 7.2, respectively. Glucose was found to inhibit the enzyme activity. The K m values of partially purified and immobilized enzymes were 170 and 210?mM, respectively. Immobilized enzyme retained 43?% of the ??-galactosidase activity of partially purified enzyme. There was no significant loss of activity on storage of immobilized beads at 4?°C for 28?days. Immobilized enzyme retained 90?% of the initial activity after being used four times.  相似文献   

18.
Purification, characterization, gene cloning, and heterologous expression in Escherichia coli of a thermostable β-1,3-1,4-glucanase from Bacillus altitudinis YC-9 have been investigated in this paper. The donor strain B. altitudinis YC-9 was isolated from spring silt. The native enzyme was purified by ammonium sulfate precipitation, diethylaminoethyl-cellulose anion exchange chromatography, and Sephadex G-100 gel filtration. The purified β-1,3-1,4-glucanase was observed to be stable at 60 °C and retain more than 90 % activity when incubated for 2 h at 60 °C and remain about 75 % and 44 % activity after incubating at 70 °C and 80 °C for 10 min, respectively. Acidity and temperature optimal for this enzyme was pH 6 and 65 °C. The open reading frame of the enzyme gene was measured to be 732 bp encoding 243 amino acids, with a predicted molecular weight of 27.47 kDa. The gene sequence of β-1,3-1,4-glucanase showed a homology of 98 % with that of Bacillus licheniformis. After being expressed in E. coli BL21, active recombinant enzyme was detected both in the supernatants of the culture and the cell lysate, with the activity of 102.7 and 216.7 U/mL, respectively. The supernatants of the culture were used to purify the recombinant enzyme. The purified recombinant enzyme was characterized to show almost the same properties to the wild enzyme, except that the specific activity of the recombinant enzyme reached 5392.7 U/mg, which was higher than those ever reported β-1,3-1,4-glucanase from Bacillus strains. The thermal stability and high activity make this enzyme broad prospect for industry application. This is the first report on β-1,3-1,4-glucanase produced by B. altitudinis.  相似文献   

19.
In this study, transesterification and esterification were investigated in batch and continuous process using immobilized Candida rugosa and Rhizopus oryzae lipases. In the case of batch process, stepwise reaction method was investigated to prevent the lipase deactivation. Reaction conditions were as follows: temperature, 45 °C; agitation speed, 250 rpm; enzyme concentration, 20%; and water contents 10%. And then, conversion yield was 98.33% at 4 h. In the case of continuous process, circulation and long-term continuous system were investigated for development of efficient mass transfer system. Optimal reaction conditions were as follows: temperature, 45 °C; flow rate, 0.8 mL/min; and water contents, 10%. And then, conversion yield of biodiesel was 97.98% at 3 h. Especially, the maximum conversion yield using a mixture of immobilized lipases exceeded over 90% for 108 h in long-term continuous system under optimal reaction conditions (45 °C; flow rate, 0.8 mL/min; and water contents, 10%). These results should help in determining the best method for the biodiesel production and improving the design and operation of large scale by enzymatic systems.  相似文献   

20.
The enzymatic alcoholysis of crude palm oil with methanol and ethanol was investigated using commercial immobilized lipases (Lipozyme RM IM, Lipozyme TL IM). The effect of alcohol (methanol or ethanol), molar ratio of alcohol to crude palm oil, and temperature on biodiesel production was determined. The best ethyl ester yield was about 25 wt.% and was obtained with ethanol/oil molar ratio of 3.0, temperature of 50 °C, enzyme concentration of 3.0 wt.%, and stepwise addition of the alcohol after 4 h of reaction. Experiments with 1 and 3 wt.% of KOH and 3 wt.% of MgO were carried out to compare their catalytic behavior with the enzymatic transesterification results. The commercial immobilized lipase, Lipozyme TL IM, showed the best catalytic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号