共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
3.
将十二烷基苯磺酸掺杂的聚苯胺(PAn DBSA)与乙烯丙烯酸共聚物(EAA)或聚烯烃弹性体(POE)进行溶液共混制得了PAn DBSA/EAA或PAn DBSA/POE导电复合物。研究了绝缘聚合物的化学结构对聚苯胺导电复合物形态结构及电性能影响。结果表明,极性聚合物EAA中的羧基能与PAn形成氢键并发生掺杂作用,复合物中卷曲的PAn主链能充分展开,导致PAn/EAA复合物具有非常低的逾渗域值(1.5%),PAn含量为20.0%时,电导率高达7.1S/cm。POE为非极性共聚物,与极性较强的PAn相容性较差,导致PAn/POE复合物具有较高逾渗域值(5.0%),PAn含量为20.0%时,电导率仅为3.0×10-5S/cm。 相似文献
4.
聚苯胺/聚乙烯醇导电复合膜的制备及性质研究 总被引:13,自引:0,他引:13
用较简单的化学氧化现场吸附聚合法(in-situpolymerization)制得了聚苯胺(PAn)/聚乙烯醇(PVA)导电复合膜.该膜具有较好的导电性和机械性能;其电导率可达5.8s/cm,拉伸强度达13MPa,断裂伸长率为110%左右.本文讨论了制备的各种条件对复合膜导电性能及力学性能的影响、稳定性及电化学活性;并采用循环伏安曲线、扫描电镜(SEM)、FTIR谱及元素分析对该复合膜的结构和性能进行了表征. 相似文献
5.
聚酰胺材料是一种重要的工程塑料和合成纤维原料,解决材料使用过程中的表面静电堆积问题是提升材料性能、扩展其应用领域的重要研究方向,因此发展了多种通过物理与化学的方法研究制备抗静电聚酰胺材料的技术.聚苯胺以其单体原料易得、合成工艺简单、掺杂现象独特、电导率较高、在空气中具有良好的稳定性等特点,被认为是最有前途的导电高分子之一,但其缺点也很明显,即加工性能很差.以聚苯胺作为抗静电剂与聚酰胺复合,不但大大提高了聚酰胺材料在应用于织物、涂料、输油管等领域时的抗静电性能,还可以解决聚苯胺的加工问题.基于近年来聚酰胺/聚苯胺导电复合材料的制备方法和复合材料特性,综述了聚酰胺/聚苯胺复合纤维、复合薄膜、复合粉末、三相复合等导电复合材料体系的制备方法、研究进展及应用领域. 相似文献
6.
7.
8.
9.
研究了原位聚合法制备聚酰胺/聚苯胺导电纤维,并对制备的复合纤维进行红外及光学显微镜测试,结果表明聚苯胺与纤维成功复合。对制备的复合纤维进行电导率测试,采用控制单一变量法探讨了苯胺单体在不同的条件下聚合对纤维电导率的影响,并讨论了反应温度对聚合过程和电导率的影响,得出最佳的工艺条件为:纤维经30%的甲酸溶液预处理20min,苯胺单体浓度为0.8M,氧化剂过硫酸铵浓度为1M,掺杂酸为盐酸,浓度为0.8M,冰水浴条件,反应时间为4h,得到的聚酰胺/聚苯胺导电纤维的电导率为3.7S/m。 相似文献
10.
11.
原位聚合法制备PANI/PET导电织物及其性能分析 总被引:1,自引:0,他引:1
在聚酯纤维基材及其织物表面,原位聚合形成厚度约1~2μm聚苯胺包覆层,制得聚苯胺(PANI)/聚酯(PET)导电织物.PANI层优异的导电性能使之成为有广阔发展前景的柔性电磁屏蔽材料.正交试验分析研究了苯胺单体浓度、氧化剂:苯胺摩尔比、掺杂酸浓度、反应时间对PANI包覆层外观形态、与基体结合牢度以及导电性的影响.实验表明:在经适当前处理的PET基材表面,以苯胺单体浓度为0.25mol/L、氧化剂与苯胺摩尔比为1∶1、掺杂酸浓度0.5 mol/L、反应时间60 min、反应温度为0~20℃时制备的PANI/PET导电织物方阻最小,导电性最好;掺杂酸酸性越强,导电性越好.SEM、FTIR及XRD测试表明涤纶织物表面有均匀连续的聚苯胺膜存在.分析表明聚苯胺分子链中氧化结构与还原结构含量基本相等,说明聚苯胺渗入纤维内部,使纤维无定形区面积增加,结晶度减小. 相似文献
12.
13.
柔性和可穿戴传感器最近十几年来的发展,使得它们在个性化医疗、人机交互和智能机器人等方面拥有良好的应用前景。由导电材料和弹性聚合物组成的柔性导电高分子复合材料具有高的可拉伸性、良好的柔韧性、优异的耐久性等优点,可用来制备传感范围宽、灵敏度高的柔性应变传感器。本文综述了基于柔性导电高分子复合材料的可拉伸应变传感器的分类(填充型、三明治型、吸附型应变传感器)和传感机理(隧穿效应,分离机制,裂纹扩展),并详细介绍了传感器所用复合材料的结构设计,包括内部结构(双逾渗网络、隔离、多孔、“砖混”结构)、表面结构(微裂纹、褶皱结构)和宏观结构(纤维状、网状、薄膜结构)。内部结构设计可降低材料的逾渗阈值,表面结构设计可提高传感器性能,每个宏观结构都有自己的特点。最后对应变传感器的材料选择、制备工艺、结构设计、附加性能、集成技术和应用方向等方面进行了展望。 相似文献
14.
导电高分子复合材料(Conductive Polymer Composites,CPCs)研究的重点和热点之一是如何控制导电粒子的分布,有效降低CPCs逾渗值,提高CPCs综合性能,其中具有隔离结构的CPCs因能大大降低复合材料的逾渗值而受到研究者的广泛关注。本文综述了制备隔离结构CPCs的方法,包括机械共混法、溶液共混法、乳液法等,分析了此类材料具有较低逾渗值的机理,总结了此类材料对温度、溶剂等外场的响应规律。根据复合材料微观结构指出提高此类材料力学性能是推进此类材料应用的关键。 相似文献
15.
首先用硅烷偶联剂(KH550)对所制备粒径在100 nm以下的纳米ZnO进行表面修饰(M-ZnO), 然后在弱磁场(0.4 T)下乙醇/水/十二烷基苯磺酸(DBSA)体系中原位聚合分别制备了重均分子量达3×104的聚苯胺(PANI)及聚苯胺/纳米ZnO复合材料. 红外分析表明纳米ZnO的加入使聚苯胺的特征峰向低波数方向移动|溶解性测试表明聚苯胺及其复合材料在氯仿和N-甲基吡咯烷酮中均有较高的溶解度(高于80%)|X-射线衍射表明磁场能有效地改善聚苯胺主链的规整性, 使聚苯胺分子链有更好离域的π电子体系|M-ZnO的引入显著地提高了PANI的电导率(可达220 S/m), 同时具有较好的透光性(80%)|这表明PANI/纳米ZnO复合材料在柔性光电器件领域具有潜在的应用价值. 相似文献
16.
17.
原位化学氧化聚合制备聚苯胺/丝素复合导电膜 总被引:1,自引:0,他引:1
采用原位化学氧化聚合方法在蚕丝丝素蛋白膜表面生长聚苯胺,制备得到表面均匀覆盖导电聚合物的复合导电丝素膜,其电导率约为3×10^-2S/cm。纤维表面与导电聚合物的相互作用改善了原丝素膜的耐热性能,但并未降低其力学性能。 相似文献