首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small-angle neutron scattering is utilized to determine the flow induced alignment of a model thermotropic liquid crystalline polymer (LCP) as a function of shear rate and temperature. The results demonstrate that the flow-induced structures in thermotropic liquid crystalline polymers have similarities and differences to those in lyotropic liquid crystalline polymer solutions. The shear rate dependence of the alignment shows that the flow-induced alignment correlates very well to the viscosity behavior of the LCP in the shear thinning regime, while temperature variation results in a change in the extent of alignment within the nematic phase. Relaxation results also demonstrate that the flow-induced alignment remains essentially unchanged for up to an hour after the shear field has been removed. Last, there exists a regime at low shear rate and low temperature where alignment of the LCP molecule perpendicular to the applied shear flow is stable. These results provide important experimental evidence of the molecular level changes that occur in a thermotropic liquid crystalline polymer during flow, which can be utilized to develop theoretical models and more efficiently process thermotropic polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 3017–3023, 1998  相似文献   

2.
A unique viscometer of the CS rheometer viscometer class designed at the Kazan State University of Technology is used to measure viscosities of two p-n-alkyloxybenzylidene-p-toluidines in the entire temperature range of the liquid crystalline state and transition into an isotropic liquid. The measured shear stresses and flow rates are used to calculate shear rates and plot flow and viscosity curves. The liquid crystalline phase and isotropic liquid are demonstrated to possess Newtonian viscosity, whose viscous flow activation parameters are calculated in the temperature range under study. The results are discussed from the standpoint of intermolecular interactions and structural details of the liquid crystalline phase.  相似文献   

3.
We reacted various dimeric, liquid‐crystalline epoxy–imine monomers, differing in the length of the central aliphatic spacer or the dipolar moments, with heptanedioic acid. The resulting systems showed a liquid‐crystalline phase in some cases, depending on the dimer and on the reaction conditions. The systems were characterized with respect to their mesomorphic properties and then were submitted to dynamic mechanical thermal analysis in both fixed‐frequency and frequency‐sweep modes in the shear sandwich configuration. The arrangement in the liquid‐crystalline phase seemed to be mainly affected both by the polarization of the mesogen and by the reaction temperature, which favored the liquid‐crystalline arrangement when it was lying in the range of stability of the dimer mesophase. In agreement with other recent literature data, dynamic mechanical thermal analysis results suggested that the presence of the mesogen directly incorporated into the main chain increased the lifetimes of the elastic modes both in the isotropic phase and in the liquid‐crystalline phase with respect to side‐chain liquid‐crystalline elastomers and that the time–temperature superposition principle did not hold through the liquid‐crystalline‐to‐isotropic transition. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44:6270–6286, 2006  相似文献   

4.
The dynamic rheological properties of discontinuous cubic liquid crystal, formed by nonionic surfactant C(12-14)E(12), were investigated in the discrete and continuous patterns of raising temperature. In the discrete pattern, the discontinuous cubic phase appears in two types of viscoelastic behaviors under the melting points of cubic phase: elastic gel and viscoelastic liquid. When the discontinuous cubic phase begins to melt, it has the weak polymer-like viscoelasticity. Temperature and shear frequency have completely different effects on the ratio of viscous and elastic components of samples in these three states. At low temperature, the samples dominate in elasticity and temperature and shear frequency has hardly any effect on viscoelasticity. At moderate temperature, its ratio of viscous and elastic components increases with increasing temperature and decreasing shear frequency. At the vicinity of the melting point of cubic liquid crystal, the cubic liquid crystal appears to have almost equaled viscous and elastic component; shear has obvious effect on the ratio of viscoelasticity at low frequency. The results from the continuous pattern of raising temperature are consistent with those from the discrete pattern.  相似文献   

5.
Rheological studies were carried out on concentrated m-cresol solutions of two helical synthetic polypeptides; poly-γ-benzyl-L -glutamate (PBLG; molecular weight, 150,000) and poly-?-carbobenzyloxy-L -lysine (PCBZL; molecular weight, 200,000). Steady shear measurements were made over a range of 0.01–16,000 sec?1 to obtain steady shear viscosity and first normal stress difference. Dynamic viscosity and dynamic storage modulus were measured both by oscillatory shear between cone and plate and also by an eccentric rotating disk device over frequency ranges of 0.1–400 and 0.1–63 rad/sec, respectively. The concentration ranges were such that both liquid crystalline and isotropic solutions were investigated. The previously reported observations of an apparent negative first normal stress difference within a defined range of shear rate for liquid crystalline solutions were confirmed for the PBLG and PCBZL solutions. At high shear rates the peaks in plots of steady shear viscosity against concentration were profoundly suppressed but peaks in first normal stress difference versus concentration were not. The observation of liquid crystalline order in PCBZL/m-cresol solutions at room temperature constitutes evidence that the inverse coil-helix transition temperature is lower in concentrated solutions than in dilute solutions. The critical concentration for formation of the liquid crystalline phase was higher for PCBZL than for PBLG, despite a higher axial ratio, due to helix flexibility.  相似文献   

6.
应用DSC、偏光显微镜和动态力学分析,研究了胆甾液晶与甲基丙烯酸甲酯-甲基丙烯酸丁酯无规共聚物共混体系的相容性及相态转变.表明共聚物的组成、分子量大小可抑制胆甾液晶的相态转变.给出了形成稳定相容的液晶/高分子体系的最佳条件.  相似文献   

7.
Four new synthesised liquid crystalline compounds belonging to the homologous series of fluorinated biphenyl benzoate esters have been studied to compare their dielectric and electrooptic properties. Three of the studied compounds exhibited ferro- and antiferroelectric phases while one of them exhibited only one liquid crystalline phase – ferroelectric SmC*. No paraelectric phase was detected and straight transition between isotropic liquid and ferroelectric phases was observed for all studied compounds. Tilt angle for all of the studied compounds was equal to ca. 45? in the liquid crystalline phases, except temperature range close to the isotropic liquid–ferroelectric smectic phase transition. Temperature dependences of helical pitch, spontaneous polarisation and switching time have been determined. Based on XRD results, temperature dependence of the layer thickness has also been found. Only one relaxation process has been revealed in the ferroelectric as well as antiferroelectric phases, even the bias field up to 8 V/µm was applied. The dielectric and electrooptic data are discussed based on the mean-field theory predictions.  相似文献   

8.
Recently we observed an unusual temperature dependence of the pretilt angle of a nematic liquid crystal generated at the rubbed surface of a side group liquid crystalline polymer film. To understand the mechanism, a detailed investigation of the temperature effect on the rubbing-induced optical phase retardation of a side group liquid crystalline polymer film has been carried out. On heating the film above the glass transition temperature of the polymer, a clear change is seen in the temperature dependence of the optical phase retardation. We infer from this investigation that the thermal variation of the rubbing-induced optical phase retardation results in a change in the temperature variation of the pretilt angle.  相似文献   

9.
《Liquid crystals》2001,28(11):1723-1725
Recently we observed an unusual temperature dependence of the pretilt angle of a nematic liquid crystal generated at the rubbed surface of a side group liquid crystalline polymer film. To understand the mechanism, a detailed investigation of the temperature effect on the rubbing-induced optical phase retardation of a side group liquid crystalline polymer film has been carried out. On heating the film above the glass transition temperature of the polymer, a clear change is seen in the temperature dependence of the optical phase retardation. We infer from this investigation that the thermal variation of the rubbing-induced optical phase retardation results in a change in the temperature variation of the pretilt angle.  相似文献   

10.
Supramolecular side chain liquid crystalline polymers (SCLCPs) based on poly(3-carboxypropylmethylsiloxane-co-dimethylsiloxane) (PSIX, X=100, 76, 60, 41 or 23, denoting the mole percentage of 3-carboxypropylmethylsiloxane unit in the polymer) and stilbazole derivatives have been obtained through intermolecular hydrogen bonding (H-bonding) interactions between the carboxylic acid and the pyridyl moieties. The formation of H-bonding and self-assembly results in the formation of new mesogenic units, in which H-bonds function as molecular connectors. FTIR shows the existence of H-bonding in the complexes. The polymeric complexes behave as single component liquid crystalline polymers and exhibit stable and enantiotropic mesophases. The liquid crystalline properties of the supramolecular SCLCPs were studied using differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction, and were found to exhibit smectic A phases with focal-conic textures. The thermal stability of the SCLCP increases on increasing the carboxylic acid content in the polysiloxane and the concentration of the stilbazole derivative in the complex. However, the thermal stability decreases on increasing the chain length of the stilbazole derivative. The crystal phase was not formed even on cooling to the glass transition temperature of the polymeric complex.  相似文献   

11.
The viscoelastic behavior of the two different liquid crystalline lamellar phases and the liquid crystalline cubic phase of the mixed soybean lecithin/DDAB system in water was studied through rheology, with mechanical parameters studied as a function of composition. The swollen or diluted lamellar region is formed by vesicles, and its characteristic flow curve presents two-power law regions separated by a region where viscosity passes through a maximum. Yield stress and shear-dependent flow behavior were also observed. The microstructure suffers transformation under shear stress, and rheological response shifts from thixotropic to antithixotropic loops. Similar rheological behavior has been observed for samples in the collapsed or concentrated lamellar region, at the water-rich corner of the phase diagram. Vesicle formation may therefore occur by shearing the initial stacked and open bilayers. However, concentrated lamellar samples in the water-poor part of the phase diagram are less sensitive to shear effects and show plastic behavior and thixotropy. All lamellar samples manifest high elasticity. The dynamic responses of both lamellar topologies, i.e., vesicles and open bilayers, are comparable and exhibit an infinite relation time. The bicontinuous cubic, liquid crystalline phase is highly viscous. Its dynamic response cannot be modeled by a Maxwell model.  相似文献   

12.
The micro- and mesoscopic structure of reverse Pluronic 25R4 in aqueous mixtures has been studied by SANS, SAXS and shear rheology. These techniques have been able to give a deep insight into the complex structure of the system phase diagram, that includes an isotropic water-rich liquid phase L(1), and liquid crystalline phases with hexagonal, E, or lamellar order, D. Particular attention has been paid to the isotropic water-rich phase L(1), which has a large stability region in the temperature-composition phase diagram. This region is crossed by a large "cloudy zone". Below it, namely at low temperature and composition, SANS data show the presence of polymer unimers in a gaussian coil conformation. Above the "cloudy zone", at higher temperature and composition, the L(1) phase is structured as a network of interconnected multimeric micelles. Rheology adds information about the structuring of the L(1) phase showing its incipient hexagonal pre-structuring. This technique is also able to highlight the defective structure of the E phase itself. In the temperature and concentration ranges in which a lamellar phase D is present, SANS and SAXS results are in complete agreement, showing how interlamellar distance is influenced by both polymer composition and temperature according to an "ideal deswelling" or a "not ideal swelling" mechanism. In addition, in the D phase rheology suggests the presence of densely packed vesicles.  相似文献   

13.
Four series of ferroelectric liquid crystals containing oligooxyethylene spacers have been synthesized. These obtained liquid crystal compounds were characterized by NMR, differential scanning calorimetry (DSC) and optical polarized microscopy (POM). The properties of the liquid crystalline phase were investigated as a function of spacer units, numbers of core aromatic rings, and different terminal asymmetric moieties. It was found that (i) the phase transition temperature decreased with the increasing oligooxyethylene spacer unit, (ii) the liquid crystalline phases were enhanced in three phenyl ring system than in two phenyl ring system, and (iii) ferroelectric liquid crystals containing different terminal asymmetric moieties exhibited novel mesophase phenomena. A twist grain boundary phase (TGBA phase) was observed in some compounds of this study. Furthermore, a wide temperature chiral smectic Crange including room temperature was achieved.  相似文献   

14.
The evolution of structure, and thermal and dynamic mechanical properties of a liquid crystalline epoxy during curing has been studied with differential scanning calorimetry (DSC), polarized optical microscopy, x-ray scattering, and dynamic mechanical analysis. The liquid crystalline epoxy was the diglycidyl ether of 4,4′-dihydroxy-α-methylstilbene (DGEDHMS). Two curing agents were used in this study: a di-functional amine, the aniline adduct of DGEDHMS, and a tetra-functional sulfonamido amine, sulfanilamide. The effects of curing agent, cure time, and cure temperature have been investigated. Isothermal curing of the liquid crystalline epoxy with the di-functional amine and the tetra-functional sulfonamido amine causes an increase in the mesophase stability of the liquid crystalline epoxy resin. The curing also leads to various liquid crystalline textures, depending on the curing agent and cure temperature. These textures coarsen during the isothermal curing. Moreover, curing with both curing agents results in a layered structure with mesogenic units aligned perpendicular to the layer surfaces. The layer thickness decreases with cure temperature for the systems cured with the tetra-functional curing agent. The glass transition temperature of the cured networks rises with increasing cure temperature due to the increased crosslink density. The shear modulus of the cured networks shows a strong temperature dependence. However, it does not change appreciably with cure temperature. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2363–2378, 1997  相似文献   

15.
以聚三乙二醇双(4-羧苯)醚(PEG3)、邻联甲苯胺和己内酰胺为单体,通过共缩聚的方法合成了一种嵌段共聚物,聚酰胺-酰胺.采用红外光谱仪、核磁、偏光显微镜、差热分析和广角X光衍射对其结构及性能进行了表征.研究表明,这种嵌段共聚物具有液晶性;与缩聚得到的热致聚酰胺液晶(TLCP)相比,共缩聚得到的热致聚酰胺液晶(TLCP-N6)热力学性能发生了改变,在很宽的温度范围内呈向列相,并且在一定条件下可形成固化诱导条带织构和剪切条带织构.  相似文献   

16.
1st-5th generation poly(propyleneimine) dendrimers having peripheral 2,3-difluorobiphenyl mesogenic groups have been synthesized. They exhibited smectic liquid crystalline behaviour. All the liquid crystalline dendrimers exhibited a smectic A (SmA) phase and a crystal E (E) phase. The SmA-isotropic phase transition temperature increased with increasing generation. In addition, a homeotropic structure was spontaneously formed on a glass plate in the SmA phase for the 2nd, 3rd, and 4th generation dendrimers. The hometropic structure remained unchanged in the phase.  相似文献   

17.
手性聚甲基丙烯酸酯液晶聚合物的合成及相行为的研究   总被引:2,自引:1,他引:2  
手性聚甲基丙烯酸酯液晶聚合物的合成及相行为的研究向前,张纪宇,张树范(中国科学院化学研究所北京100080)关键词手性液晶聚合物,相行为手性侧链液晶聚合物在侧链中含有不对称碳原子的末端基,使聚合物显示St相.S?相层中的分子呈倾斜排列而产生自发极化....  相似文献   

18.
A series of liquid crystalline dimers DOXD-n (n = 6–10) based on discotic 1,3,4-oxadiazole have been synthesised and its thermal properties have been investigated by means of polarised optical microscopy, differential scanning calorimetry, variable-temperature X-ray diffraction and thermogravimetric analyses. Most of the dimers display a discotic nematic phase or a hexagonal columnar phase at room temperature and exhibit photoluminscence in solution, in solid state and in liquid crystalline phase. The relationship between the properties and states of the matter is discussed briefly. Notably, the fluorescent intensity in liquid crystalline state decreased apparently compared to that in solid state due to the self-quenching aggregates.  相似文献   

19.
Supramolecular side chain liquid crystalline polymers (SCLCPs) based on poly(3-carboxypropylmethylsiloxane-co-dimethylsiloxane) (PSIX, X=100, 76, 60, 41 or 23, denoting the mole percentage of 3-carboxypropylmethylsiloxane unit in the polymer) and stilbazole derivatives have been obtained through intermolecular hydrogen bonding (H-bonding) interactions between the carboxylic acid and the pyridyl moieties. The formation of H-bonding and self-assembly results in the formation of new mesogenic units, in which H-bonds function as molecular connectors. FTIR shows the existence of H-bonding in the complexes. The polymeric complexes behave as single component liquid crystalline polymers and exhibit stable and enantiotropic mesophases. The liquid crystalline properties of the supramolecular SCLCPs were studied using differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction, and were found to exhibit smectic A phases with focal-conic textures. The thermal stability of the SCLCP increases on increasing the carboxylic acid content in the polysiloxane and the concentration of the stilbazole derivative in the complex. However, the thermal stability decreases on increasing the chain length of the stilbazole derivative. The crystal phase was not formed even on cooling to the glass transition temperature of the polymeric complex.  相似文献   

20.
The molecular relaxation mechanisms in the glass transition region and in the liquid crystalline phase exhibited by two side-chain liquid crystalline polysiloxanes have been studied by Thermally Stimulated Discharge Currents. These results were compared with those previously obtained by dielectric relaxation spectroscopy. It was observed that two relaxation mechanisms were present in the liquid crystalline phase, and we suggest that these might correspond to the motions of the mesogenic moieties in the liquid crystalline phase. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号