首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider NN independent stochastic processes (Xj(t),t∈[0,T])(Xj(t),t[0,T]), j=1,…,Nj=1,,N, defined by a one-dimensional stochastic differential equation with coefficients depending on a random variable ?j?j and study the nonparametric estimation of the density of the random effect ?j?j in two kinds of mixed models. A multiplicative random effect and an additive random effect are successively considered. In each case, we build kernel and deconvolution estimators and study their L2L2-risk. Asymptotic properties are evaluated as NN tends to infinity for fixed TT or for T=T(N)T=T(N) tending to infinity with NN. For T(N)=N2T(N)=N2, adaptive estimators are built. Estimators are implemented on simulated data for several examples.  相似文献   

2.
In this paper, we study nonparametric estimation of the Lévy density for pure jump Lévy processes. We consider nn discrete time observations with step ΔΔ. The asymptotic framework is: nn tends to infinity, Δ=ΔnΔ=Δn tends to zero while nΔnnΔn tends to infinity. First, we use a Fourier approach (“frequency domain”): this allows us to construct an adaptive nonparametric estimator and to provide a bound for the global L2L2-risk. Second, we use a direct approach (“time domain”) which allows us to construct an estimator on a given compact interval. We provide a bound for L2L2-risk restricted to the compact interval. We discuss rates of convergence and give examples and simulation results for processes fitting in our framework.  相似文献   

3.
In this paper, some nonparametric approaches of density function estimation are developed when censoring indicators are missing at random. A conditional mean score based estimator and a mean score estimator are suggested, respectively. The two estimators are proved to be asymptotically normal and uniformly strongly consistent. The bandwidth selection problem is also discussed. A simulation study is conducted to compare finite-sample behaviors of the proposed estimators.  相似文献   

4.
Summary We introduce nonparametric estimators of the autocovariance of a stationary random field. One of our estimators has the property that it is itself an autocovatiance. This feature enables the estimator to be used as the basis of simulation studies such as those which are necessary when constructing bootstrap confidence intervals for unknown parameters. Unlike estimators proposed recently by other authors, our own do not require assumptions such as isotropy or monotonicity. Indeed, like nonparametric function estimators considered more widely in the context of curve estimation, our approach demands only smoothness and tail conditions on the underlying curve or surface (here, the autocovariance), and moment and mixing conditions on the random field. We show that by imposing the condition that the estimator be a covariance function we actually reduce the numerical value of integrated squared error.  相似文献   

5.
Consider observations (representing lifelengths) taken on a random field indexed by lattice points. Our purpose is to estimate the hazard rate r(x), which is the rate of failure at time x for the survivors up to time x. We estimate r(x) by the nonparametric estimator constructed in terms of a kernel-type estimator for f(x) and the natural estimator for . Under some general mixing assumptions, the limiting distribution of the estimator at multiple points is shown to be multivariate normal. The result is useful in establishing confidence bands for r(x) with x in an interval.  相似文献   

6.
The article is devoted to the nonparametric estimation of the quadratic covariation of non-synchronously observed Itô processes in an additive microstructure noise model. In a high-frequency setting, we aim at establishing an asymptotic distribution theory for a generalized multiscale estimator including a feasible central limit theorem with optimal convergence rate on convenient regularity assumptions. The inevitably remaining impact of asynchronous deterministic sampling schemes and noise corruption on the asymptotic distribution is precisely elucidated. A case study for various important examples, several generalizations of the model and an algorithm for the implementation warrant the utility of the estimation method in applications.  相似文献   

7.
Local likelihood estimation for nonstationary random fields   总被引:3,自引:0,他引:3  
We develop a weighted local likelihood estimate for the parameters that govern the local spatial dependency of a locally stationary random field. The advantage of this local likelihood estimate is that it smoothly downweights the influence of faraway observations, works for irregular sampling locations, and when designed appropriately, can trade bias and variance for reducing estimation error. This paper starts with an exposition of our technique on the problem of estimating an unknown positive function when multiplied by a stationary random field. This example gives concrete evidence of the benefits of our local likelihood as compared to unweighted local likelihoods. We then discuss the difficult problem of estimating a bandwidth parameter that controls the amount of influence from distant observations. Finally we present a simulation experiment for estimating the local smoothness of a local Matérn random field when observing the field at random sampling locations in [0,1]2. The local Matérn is a fully nonstationary random field, has a closed form covariance, can attain any degree of differentiability or Hölder smoothness and behaves locally like a stationary Matérn. We include an appendix that proves the positive definiteness of this covariance function.  相似文献   

8.
In this paper, we establish an inequality of the characteristic functions for strongly mixing random vectors, by which, an upper bound is provided for the supremum of the absolute value of the difference of two multivariate probability density functions based on strongly mixing random vectors. As its application, we consider the consistency and asymptotic normality of a kernel estimate of a density function under strong mixing. Our results generalize some known results in the literature.  相似文献   

9.
We consider a stationary Markov renewal process whose inter-arrival time density depends multiplicatively on the distance between the past and present state of the embedded chain. This is appropriate when the jump size is governed by influences that accumulate over time. Then we can construct an estimator for the inter-arrival time density that has the parametric rate of convergence. The estimator is a local von Mises statistic. The result carries over to the corresponding semi-Markov process.  相似文献   

10.
In this paper, a fixed design regression model where the errors follow a strictly stationary process is considered. In this model the conditional mean function and the conditional variance function are unknown curves. Correlated errors when observations are missing in the response variable are assumed. Four nonparametric estimators of the conditional variance function based on local polynomial fitting are proposed. Expressions of the asymptotic bias and variance of these estimators are obtained. A simulation study illustrates the behavior of the proposed estimators.  相似文献   

11.
In a range of practical problems the boundary of the support of a bivariate distribution is of interest, for example where it describes a limit to efficiency or performance, or where it determines the physical extremities of a spatially distributed population in forestry, marine science, medicine, meteorology or geology. We suggest a tracking-based method for estimating a support boundary when it is composed of a finite number of smooth curves, meeting together at corners. The smooth parts of the boundary are assumed to have continuously turning tangents and bounded curvature, and the corners are not allowed to be infinitely sharp; that is, the angle between the two tangents should not equal π. In other respects, however, the boundary may be quite general. In particular it need not be uniquely defined in Cartesian coordinates, its corners my be either concave or convex, and its smooth parts may be neither concave nor convex. Tracking methods are well suited to such generalities, and they also have the advantage of requiring relatively small amounts of computation. It is shown that they achieve optimal convergence rates, in the sense of uniform approximation.  相似文献   

12.
The problem of optimal prediction in the stochastic linear regression model with infinitely many parameters is considered. We suggest a prediction method that outperforms asymptotically the ordinary least squares predictor. Moreover, if the random errors are Gaussian, the method is asymptotically minimax over ellipsoids in ?2. The method is based on a regularized least squares estimator with weights of the Pinsker filter. We also consider the case of dynamic linear regression, which is important in the context of transfer function modeling.  相似文献   

13.
Asymptotic local equivalence in the sense of Le Cam is established for inference on the drift in multidimensional ergodic diffusions and an accompanying sequence of Gaussian shift experiments. The nonparametric local neighbourhoods can be attained for any dimension, provided the regularity of the drift is sufficiently large. In addition, a heteroskedastic Gaussian regression experiment is given, which is also locally asymptotically equivalent and which does not depend on the centre of localisation. For one direction of the equivalence an explicit Markov kernel is constructed.  相似文献   

14.
We present a new method for estimating the frontier of a multidimensional sample. The estimator is based on a kernel regression on the power-transformed data. We assume that the exponent of the transformation goes to infinity while the bandwidth of the kernel goes to zero. We give conditions on these two parameters to obtain complete convergence and asymptotic normality. The good performance of the estimator is illustrated on some finite sample situations.  相似文献   

15.
This paper develops estimation approaches for nonparametric regression analysis with surrogate data and validation sampling when response variables are measured with errors. Without assuming any error model structure between the true responses and the surrogate variables, a regression calibration kernel regression estimate is defined with the help of validation data. The proposed estimator is proved to be asymptotically normal and the convergence rate is also derived. A simulation study is conducted to compare the proposed estimators with the standard Nadaraya-Watson estimators with the true observations in the validation data set and the complete observations, respectively. The Nadaraya-Watson estimator with the complete observations can serve as a gold standard, even though it is practically unachievable because of the measurement errors.  相似文献   

16.
We present methods to handle error-in-variables models. Kernel-based likelihood score estimating equation methods are developed for estimating conditional density parameters. In particular, a semiparametric likelihood method is proposed for sufficiently using the information in the data. The asymptotic distribution theory is derived. Small sample simulations and a real data set are used to illustrate the proposed estimation methods.  相似文献   

17.
The least-squares linear inverse estimation problem for random fields is studied in a fractional generalized framework. First, the second-order regularity properties of the random fields involved in this problem are analysed in terms of the fractional Sobolev norms. Second, the incorporation of prior information in the form of a fractional stochastic model, with covariance operator bicontinuous with respect to a certain fractional Sobolev norm, leads to a regularization of this problem. Third, a multiresolution approximation to the class of linear inverse problems considered is obtained from a wavelet-based orthogonal expansion of the input and output random models. The least-squares linear estimate of the input random field is then computed using these orthogonal wavelet decompositions. The results are applied to solving two important cases of linear inverse problems defined in terms of fractional integral operators.  相似文献   

18.
In this article we investigate the nonparametric estimation of the jump density of a compound Poisson process from the discrete observation of one trajectory over [0,T][0,T]. We consider the case where the sampling rate Δ=ΔT→0Δ=ΔT0 as T→∞T. We propose an adaptive wavelet threshold density estimator and study its performance for LpLp losses, p≥1p1, over Besov spaces. The main novelty is that we achieve minimax rates of convergence for sampling rates ΔTΔT that vanish slowly. The estimation procedure is based on the explicit inversion of the operator giving the law of the increments as a nonlinear transformation of the jump density.  相似文献   

19.
We consider, in the presence of covariates, non-independent competing risks that are subject to right censoring. We define a nonparametric estimator of the incident regression function through the generalized product-limit estimator of the conditional censorship distribution function. Under suitable conditions, we establish the almost sure uniform convergence of those estimators with an appropriate rate.  相似文献   

20.
We consider regression models with multiple correlated responses for each design point. Under the null hypothesis, a linear regression is assumed. For the least-squares residuals of this linear regression, we establish the limit of the partial sums. This limit is a projection on a certain subspace of the reproducing Kernel Hilbert space of a multivariate Brownian motion. Based on this limit, we propose a significance test of Kolmogorov-Smirnov type to test the null hypothesis and show that this result can be used to study a change-point problem in the case of linear profile data (panel data). We compare our proposed method, which does not rely on any distributional assumptions, with the likelihood ratio test in a simulation study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号