共查询到20条相似文献,搜索用时 0 毫秒
1.
We consider a panel data semiparametric partially linear regression model with an unknown parameter vector for the linear parametric component, an unknown nonparametric function for the nonlinear component, and a one-way error component structure which allows unequal error variances (referred to as heteroscedasticity). We develop procedures to detect heteroscedasticity and one-way error component structure, and propose a weighted semiparametric least squares estimator (WSLSE) of the parametric component in the presence of heteroscedasticity and/or one-way error component structure. This WSLSE is asymptotically more efficient than the usual semiparametric least squares estimator considered in the literature. The asymptotic properties of the WSLSE are derived. The nonparametric component of the model is estimated by the local polynomial method. Some simulations are conducted to demonstrate the finite sample performances of the proposed testing and estimation procedures. An example of application on a set of panel data of medical expenditures in Australia is also illustrated. 相似文献
2.
Jinhong You 《Journal of multivariate analysis》2006,97(4):844-873
We consider a panel data semiparametric partially linear regression model with an unknown vector β of regression coefficients, an unknown nonparametric function g(·) for nonlinear component, and unobservable serially correlated errors. The correlated errors are modeled by a vector autoregressive process which involves a constant intraclass correlation. Applying the pilot estimators of β and g(·), we construct estimators of the autoregressive coefficients, the intraclass correlation and the error variance, and investigate their asymptotic properties. Fitting the error structure results in a new semiparametric two-step estimator of β, which is shown to be asymptotically more efficient than the usual semiparametric least squares estimator in terms of asymptotic covariance matrix. Asymptotic normality of this new estimator is established, and a consistent estimator of its asymptotic covariance matrix is presented. Furthermore, a corresponding estimator of g(·) is also provided. These results can be used to make asymptotically efficient statistical inference. Some simulation studies are conducted to illustrate the finite sample performances of these proposed estimators. 相似文献
3.
In this paper, we derive the Berry-Esseen bounds of the wavelet estimator for a nonparametric regression model with linear process errors generated by φ-mixing sequences. As application, by the suitable choice of some constants, the convergence rate O(n−1/6) of uniformly asymptotic normality of the wavelet estimator is obtained. Our results generalize some known results in the literature. 相似文献
4.
This article deals with the inference on a right-censored partially linear single-index model (RCPLSIM). The main focus is the local empirical likelihood-based inference on the nonparametric part in RCPLSIM. With a synthetic data approach, an empirical log-likelihood ratio statistic for the nonparametric part is defined and it is shown that its limiting distribution is not a central chi-squared distribution. To increase the accuracy of the confidence interval, we also propose a corrected empirical log-likelihood ratio statistic for the nonparametric function. The resulting statistic is proved to follow a standard chi-squared limiting distribution. Simulation studies are undertaken to assess the finite sample performance of the proposed confidence intervals. A real example is also considered. 相似文献
5.
This paper is concerned with the estimating problem of the partially linear regression models where the linear covariates are measured with additive errors. A difference based estimation is proposed to estimate the parametric component. We show that the resulting estimator is asymptotically unbiased and achieves the semiparametric efficiency bound if the order of the difference tends to infinity. The asymptotic normality of the resulting estimator is established as well. Compared with the corrected profile least squares estimation, the proposed procedure avoids the bandwidth selection. In addition, the difference based estimation of the error variance is also considered. For the nonparametric component, the local polynomial technique is implemented. The finite sample properties of the developed methodology is investigated through simulation studies. An example of application is also illustrated. 相似文献
6.
Hua Liang 《Journal of multivariate analysis》2008,99(5):880-895
In this article we study a semiparametric generalized partially linear model when the covariates are missing at random. We propose combining local linear regression with the local quasilikelihood technique and weighted estimating equation to estimate the parameters and nonparameters when the missing probability is known or unknown. We establish normality of the estimators of the parameter and asymptotic expansion for the estimators of the nonparametric part. We apply the proposed models and methods to a study of the relation between virologic and immunologic responses in AIDS clinical trials, in which virologic response is classified into binary variables. We also give simulation results to illustrate our approach. 相似文献
7.
The purpose of this paper is two-fold. First, for the estimation or inference about the parameters of interest in semiparametric models, the commonly used plug-in estimation for infinite-dimensional nuisance parameter creates non-negligible bias, and the least favorable curve or under-smoothing is popularly employed for bias reduction in the literature. To avoid such strong structure assumptions on the models and inconvenience of estimation implementation, for the diverging number of parameters in a varying coefficient partially linear model, we adopt a bias-corrected empirical likelihood (BCEL) in this paper. This method results in the distribution of the empirical likelihood ratio to be asymptotically tractable. It can then be directly applied to construct confidence region for the parameters of interest. Second, different from all existing methods that impose strong conditions to ensure consistency of estimation when diverging the number of the parameters goes to infinity as the sample size goes to infinity, we provide techniques to show that, other than the usual regularity conditions, the consistency holds under moment conditions alone on the covariates and error with a diverging rate being even faster than those in the literature. A simulation study is carried out to assess the performance of the proposed method and to compare it with the profile least squares method. A real dataset is analyzed for illustration. 相似文献
8.
This paper focuses on the variable selections for semiparametric varying coefficient partially linear models when the covariates in the parametric and nonparametric components are all measured with errors. A bias-corrected variable selection procedure is proposed by combining basis function approximations with shrinkage estimations. With appropriate selection of the tuning parameters, the consistency of the variable selection procedure and the oracle property of the regularized estimators are established. A simulation study and a real data application are undertaken to evaluate the finite sample performance of the proposed method. 相似文献
9.
The varying coefficient partially linear model is considered in this paper. When the plug-in estimators of coefficient functions are used, the resulting smoothing score function becomes biased due to the slow convergence rate of nonparametric estimations. To reduce the bias of the resulting smoothing score function, a profile-type smoothed score function is proposed to draw inferences on the parameters of interest without using the quasi-likelihood framework, the least favorable curve, a higher order kernel or under-smoothing. The resulting profile-type statistic is still asymptotically Chi-squared under some regularity conditions. The results are then used to construct confidence regions for the parameters of interest. A simulation study is carried out to assess the performance of the proposed method and to compare it with the profile least-squares method. A real dataset is analyzed for illustration. 相似文献
10.
It is of considerable interest to test for heteroscedasticity in statistical studies. In this paper, we investigate such a problem under the framework of a semiparametric mixed model. A score test is proposed for the hypothesis that all the variance components are zero. We establish the asymptotic property of the test, and examine its performance in a simulation study. The test is illustrated with the analysis of a longitudinal study of measurements of serum creatinine. 相似文献
11.
12.
Clustered data arise commonly in practice and it is often of interest to estimate the mean response parameters as well as the association parameters. However, most research has been directed to address the mean response parameters with the association parameters relegated to a nuisance role. There is relatively little work concerning both the marginal and association structures, especially in the semiparametric framework. In this paper, our interest centers on the inference of both the marginal and association parameters. We develop a semiparametric method for clustered binary data and establish the theoretical results. The proposed methodology is investigated through various numerical studies. 相似文献
13.
In this paper, we investigate the empirical likelihood for constructing a confidence region of the parameter of interest in a multi-link semiparametric model when an infinite-dimensional nuisance parameter exists. The new model covers the commonly used varying coefficient, generalized linear, single-index, multi-index, hazard regression models and their generalizations, as its special cases. Because of the existence of the infinite-dimensional nuisance parameter, the classical empirical likelihood with plug-in estimation cannot be asymptotically distribution-free, and the existing bias correction is not extendable to handle such a general model. We then propose a link-based correction approach to solve this problem. This approach gives a general rule of bias correction via an inner link, and consists of two parts. For the model whose estimating equation contains the score functions that are easy to estimate, we use a centering for the scores to correct the bias; for the model of which the score functions are of complex structure, a bias-correction procedure using simpler functions instead of the scores is given without loss of asymptotic efficiency. The resulting empirical likelihood shares the desired features: it has a chi-square limit and, under-smoothing technique, high order kernel and parameter estimation are not needed. Simulation studies are carried out to examine the performance of the new method. 相似文献
14.
Using bimodal kernel for inference in nonparametric regression with correlated errors 总被引:1,自引:0,他引:1
For nonparametric regression model with fixed design, it is well known that obtaining a correct bandwidth is difficult when errors are correlated. Various methods of bandwidth selection have been proposed, but their successful implementation critically depends on a tuning procedure which requires accurate information about error correlation. Unfortunately, such information is usually hard to obtain since errors are not observable. In this article a new bandwidth selector based on the use of a bimodal kernel is proposed and investigated. It is shown that the new bandwidth selector is quite useful for the tuning procedures of various other methods. Furthermore, the proposed bandwidth selector itself proves to be quite effective when the errors are severely correlated. 相似文献
15.
The receiver operating characteristic (ROC) curve of a likelihood-ratio function has been shown to be the highest among all transformations of continuous markers. For any sampling scheme with the same likelihoods, the induced conditional probability is derived to have the same ROC curve and is found to be more useful for inference purposes. To compromise the difficult task of high-dimensionality in fully nonparametric models and the risk of model misspecification in fully parametric ones, an appealing single-index model is also adopted in our optimization problem. Based on a nonparametric estimator of the area under the ROC curve (AUC), we develop its related inferences and provide some simple and easily checked conditions for the validity of asymptotic results. Since the optimal marker is estimated by using a semiparametric or nonparametric model, conventional theoretical approaches might be inappropriate to some circumstances. The applicability of our procedures are further demonstrated through extensive numerical experiments and data from the studies of Pima-Indian diabetes and liver disorders. 相似文献
16.
In this paper, the functional-coefficient partially linear regression (FCPLR) model is proposed by combining nonparametric and functional-coefficient regression (FCR) model. It includes the FCR model and the nonparametric regression (NPR) model as its special cases. It is also a generalization of the partially linear regression (PLR) model obtained by replacing the parameters in the PLR model with some functions of the covariates. The local linear technique and the integrated method are employed to give initial estimators of all functions in the FCPLR model. These initial estimators are asymptotically normal. The initial estimator of the constant part function shares the same bias as the local linear estimator of this function in the univariate nonparametric model, but the variance of the former is bigger than that of the latter. Similarly, initial estimators of every coefficient function share the same bias as the local linear estimates in the univariate FCR model, but the variance of the former is bigger than that of the latter. To decrease the variance of the initial estimates, a one-step back-fitting technique is used to obtain the improved estimators of all functions. The improved estimator of the constant part function has the same asymptotic normality property as the local linear nonparametric regression for univariate data. The improved estimators of the coefficient functions have the same asymptotic normality properties as the local linear estimates in FCR model. The bandwidths and the smoothing variables are selected by a data-driven method. Both simulated and real data examples related to nonlinear time series modeling are used to illustrate the applications of the FCPLR model. 相似文献
17.
For nonnegative measurements such as income or sick days, zero counts often have special status. Furthermore, the incidence of zero counts is often greater than expected for the Poisson model. This article considers a doubly semiparametric zero-inflated Poisson model to fit data of this type, which assumes two partially linear link functions in both the mean of the Poisson component and the probability of zero. We study a sieve maximum likelihood estimator for both the regression parameters and the nonparametric functions. We show, under routine conditions, that the estimators are strongly consistent. Moreover, the parameter estimators are asymptotically normal and first order efficient, while the nonparametric components achieve the optimal convergence rates. Simulation studies suggest that the extra flexibility inherent from the doubly semiparametric model is gained with little loss in statistical efficiency. We also illustrate our approach with a dataset from a public health study. 相似文献
18.
Guoyou Qin 《Journal of multivariate analysis》2007,98(8):1658-1683
In this paper, we consider robust generalized estimating equations for the analysis of semiparametric generalized partial linear mixed models (GPLMMs) for longitudinal data. We approximate the non-parametric function in the GPLMM by a regression spline, and make use of bounded scores and leverage-based weights in the estimating equation to achieve robustness against outliers and influential data points, respectively. Under some regularity conditions, the asymptotic properties of the robust estimators are investigated. To avoid the computational problems involving high-dimensional integrals in our estimators, we adopt a robust Monte Carlo Newton-Raphson (RMCNR) algorithm for fitting GPLMMs. Small simulations are carried out to study the behavior of the robust estimates in the presence of outliers, and these estimates are also compared to their corresponding non-robust estimates. The proposed robust method is illustrated in the analysis of two real data sets. 相似文献
19.
Esra Akdeniz Duran Wolfgang Karl HärdleMaria Osipenko 《Journal of multivariate analysis》2012,105(1):164-175
We consider a difference based ridge regression estimator and a Liu type estimator of the regression parameters in the partial linear semiparametric regression model, y=Xβ+f+ε. Both estimators are analyzed and compared in the sense of mean-squared error. We consider the case of independent errors with equal variance and give conditions under which the proposed estimators are superior to the unbiased difference based estimation technique. We extend the results to account for heteroscedasticity and autocovariance in the error terms. Finally, we illustrate the performance of these estimators with an application to the determinants of electricity consumption in Germany. 相似文献
20.
Suriani Pokta 《Journal of multivariate analysis》2008,99(1):25-49
The method of Laplace is used to approximate posterior probabilities for a collection of polynomial regression models when the errors follow a process with a noninvertible moving average component. These results are useful in the problem of period-change analysis of variable stars and in assessing the posterior probability that a time series with trend has been overdifferenced. The nonstandard covariance structure induced by a noninvertible moving average process can invalidate the standard Laplace method. A number of analytical tools is used to produce corrected Laplace approximations. These tools include viewing the covariance matrix of the observations as tending to a differential operator. The use of such an operator and its Green's function provides a convenient and systematic method of asymptotically inverting the covariance matrix.In certain cases there are two different Laplace approximations, and the appropriate one to use depends upon unknown parameters. This problem is dealt with by using a weighted geometric mean of the candidate approximations, where the weights are completely data-based and such that, asymptotically, the correct approximation is used. The new methodology is applied to an analysis of the prototypical long-period variable star known as Mira. 相似文献