首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Missing covariate data are very common in regression analysis. In this paper, the weighted estimating equation method (Qi et al., 2005) [25] is used to extend the so-called unified estimation procedure (Chen et al., 2002) [4] for linear transformation models to the case of missing covariates. The non-missingness probability is estimated nonparametrically by the kernel smoothing technique. Under missing at random, the proposed estimators are shown to be consistent and asymptotically normal, with the asymptotic variance estimated consistently by the usual plug-in method. Moreover, the proposed estimators are more efficient than the weighted estimators with the inverse of true non-missingness probability as weight. Finite sample performance of the estimators is examined via simulation and a real dataset is analyzed to illustrate the proposed methods.  相似文献   

2.
The Lasso is a popular model selection and estimation procedure for linear models that enjoys nice theoretical properties. In this paper, we study the Lasso estimator for fitting autoregressive time series models. We adopt a double asymptotic framework where the maximal lag may increase with the sample size. We derive theoretical results establishing various types of consistency. In particular, we derive conditions under which the Lasso estimator for the autoregressive coefficients is model selection consistent, estimation consistent and prediction consistent. Simulation study results are reported.  相似文献   

3.
This paper provides an estimation procedure for average treatment effect through a random coefficient dummy endogenous variable model. A leading example of the model is estimating the effect of a training program on earnings. The model is composed of two equations: an outcome equation and a decision equation. Given the linear restriction in outcome and decision equations, Chen (1999) provided a distribution-free estimation procedure under conditional symmetric error distributions. In this paper we extend Chen’s estimator by relaxing the linear index into a nonparametric function, which greatly reduces the risk of model misspecification. A two-step approach is proposed: the first step uses a nonparametric regression estimator for the decision variable, and the second step uses an instrumental variables approach to estimate average treatment effect in the outcome equation. The proposed estimator is shown to be consistent and asymptotically normally distributed. Furthermore, we investigate the finite performance of our estimator by a Monte Carlo study and also use our estimator to study the return of college education in different periods of China. The estimates seem more reasonable than those of other commonly used estimators.  相似文献   

4.
This paper is concerned with the estimating problem of the partially linear regression models where the linear covariates are measured with additive errors. A difference based estimation is proposed to estimate the parametric component. We show that the resulting estimator is asymptotically unbiased and achieves the semiparametric efficiency bound if the order of the difference tends to infinity. The asymptotic normality of the resulting estimator is established as well. Compared with the corrected profile least squares estimation, the proposed procedure avoids the bandwidth selection. In addition, the difference based estimation of the error variance is also considered. For the nonparametric component, the local polynomial technique is implemented. The finite sample properties of the developed methodology is investigated through simulation studies. An example of application is also illustrated.  相似文献   

5.
The asymptotic distribution for the local linear estimator in nonparametric regression models is established under a general parametric error covariance with dependent and heterogeneously distributed regressors. A two-step estimation procedure that incorporates the parametric information in the error covariance matrix is proposed. Sufficient conditions for its asymptotic normality are given and its efficiency relative to the local linear estimator is established. We give examples of how our results are useful in some recently studied regression models. A Monte Carlo study confirms the asymptotic theory predictions and compares our estimator with some recently proposed alternative estimation procedures.  相似文献   

6.
The estimation problem of the parameters in a symmetry model for categorical data has been considered for many authors in the statistical literature (for example, Bowker (1948) [1], Ireland et al. (1969) [2], Quade and Salama (1975) [3], Cressie and Read (1988) [4], Menéndez et al. (2005) [5]) without using uncertain prior information. It is well known that many new and interesting estimators, using uncertain prior information, have been studied by a host of researchers in different statistical models, and many papers have been published on this topic (see Saleh (2006) [9] and references therein). In this paper, we consider the symmetry model of categorical data and we study, for the first time, some new estimators when non-sample information about the symmetry of the probabilities is considered. The decision to use a “restricted” estimator or an “unrestricted” estimator is based on the outcome of a preliminary test, and then a shrinkage technique is used. It is interesting to note that we present a unified study in the sense that we consider not only the maximum likelihood estimator and likelihood ratio test or chi-square test statistic but we consider minimum phi-divergence estimators and phi-divergence test statistics. Families of minimum phi-divergence estimators and phi-divergence test statistics are wide classes of estimators and test statistics that contain as a particular case the maximum likelihood estimator, likelihood ratio test and chi-square test statistic. In an asymptotic set-up, the biases and the risk under the squared loss function for the proposed estimators are derived and compared. A numerical example clarifies the content of the paper.  相似文献   

7.
Functional semiparametric partially linear model with autoregressive errors   总被引:1,自引:0,他引:1  
In this paper, we introduce a functional semiparametric model, where a real-valued random variable is explained by the sum of a unknown linear combination of the components of a multivariate random variable and an unknown transformation of a functional random variable. The errors can be autocorrelated. We focus here on the parametric estimation of the coefficients in the linear combination. First, we use a nonparametric kernel method to remove the effect of the functional explanatory variable. Then, we use generalized least squares approach to obtain an estimator of these coefficients. Under some technical assumptions, we prove consistency and asymptotic normality of our estimator. Finally, we present Monte Carlo simulations that illustrate these characteristics.  相似文献   

8.
Consider a varying-coefficient single-index model which consists of two parts: the linear part with varying coefficients and the nonlinear part with a single-index structure, and are hence termed as varying-coefficient single-index models. This model includes many important regression models such as single-index models, partially linear single-index models, varying-coefficient model and varying-coefficient partially linear models as special examples. In this paper, we mainly study estimating problems of the varying-coefficient vector, the nonparametric link function and the unknown parametric vector describing the single-index in the model. A stepwise approach is developed to obtain asymptotic normality estimators of the varying-coefficient vector and the parametric vector, and estimators of the nonparametric link function with a convergence rate. The consistent estimator of the structural error variance is also obtained. In addition, asymptotic pointwise confidence intervals and confidence regions are constructed for the varying coefficients and the parametric vector. The bandwidth selection problem is also considered. A simulation study is conducted to evaluate the proposed methods, and real data analysis is also used to illustrate our methods.  相似文献   

9.
§1IntroductionConsiderthefixeddesignsemiparametricnonlinearregressionmodelsgivenbyyi=f(xi,θ)+λ(ti)+εi,i=1,...,n,(1)wheref(,)i...  相似文献   

10.
Partially linear regression models with fixed effects are useful tools for making econometric analyses and normalizing microarray data. Baltagi and Li (2002) [7] proposed a computation friendly difference-based series estimation (DSE) for them. We show that the DSE is not asymptotically efficient in most cases and further propose a weighted difference-based series estimation (WDSE). The weights in it do not involve any unknown parameters. The asymptotic properties of the resulting estimators are established for both balanced and unbalanced cases, and it is shown that they achieve a semiparametric efficient boundary. Additionally, we propose a variable selection procedure for identifying significant covariates in the parametric part of the semiparametric fixed-effects regression model. The method is based on a combination of the nonconcave penalization (Fan and Li, 2001 [13]) and weighted difference-based series estimation techniques. The resulting estimators have the oracle property; that is, they can correctly identify the true model as if the true model (the subset of variables with nonvanishing coefficients) were known in advance. Simulation studies are conducted and an application is given to demonstrate the finite sample performance of the proposed procedures.  相似文献   

11.
As a useful tool in functional data analysis, the functional linear regression model has become increasingly common and been studied extensively in recent years. In this paper, we consider a sparse functional linear regression model which is generated by a finite number of basis functions in an expansion of the coefficient function. In this model, we do not specify how many and which basis functions enter the model, thus it is not like a typical parametric model where predictor variables are pre-specified. We study a general framework that gives various procedures which are successful in identifying the basis functions that enter the model, and also estimating the resulting regression coefficients in one-step. We adopt the idea of variable selection in the linear regression setting where one adds a weighted L1 penalty to the traditional least squares criterion. We show that the procedures in our general framework are consistent in the sense of selecting the model correctly, and that they enjoy the oracle property, meaning that the resulting estimators of the coefficient function have asymptotically the same properties as the oracle estimator which uses knowledge of the underlying model. We investigate and compare several methods within our general framework, via a simulation study. Also, we apply the methods to the Canadian weather data.  相似文献   

12.
We consider a panel data semiparametric partially linear regression model with an unknown parameter vector for the linear parametric component, an unknown nonparametric function for the nonlinear component, and a one-way error component structure which allows unequal error variances (referred to as heteroscedasticity). We develop procedures to detect heteroscedasticity and one-way error component structure, and propose a weighted semiparametric least squares estimator (WSLSE) of the parametric component in the presence of heteroscedasticity and/or one-way error component structure. This WSLSE is asymptotically more efficient than the usual semiparametric least squares estimator considered in the literature. The asymptotic properties of the WSLSE are derived. The nonparametric component of the model is estimated by the local polynomial method. Some simulations are conducted to demonstrate the finite sample performances of the proposed testing and estimation procedures. An example of application on a set of panel data of medical expenditures in Australia is also illustrated.  相似文献   

13.
A new estimation procedure for a partial linear additive model with censored responses is proposed. To this aim, ideas of Lewbel and Linton [A. Lewbel, O. Linton, Nonparametric censored and truncated regression, Econometrica 70 (2002) 765-779] on censored model regression are combined with those of Kim et al. [W. Kim, O. Linton, N.W. Hengartner, A computationally efficient estimator for additive nonparametric regression with bootstrap confidence intervals, Journal of Computational and Graphical Statistics, 8 (1999) 278-297] on marginal integration and those on average derivatives. This allows for dimension reduction, interpretability and — depending on the context — for weights yielding computationally attractive estimates. Asymptotic behavior is provided for all proposed estimators.  相似文献   

14.
The semilinear in-slide models (SLIMs) have been shown to be effective methods for normalizing microarray data [J. Fan, P. Tam, G. Vande Woude, Y. Ren, Normalization and analysis of cDNA micro-arrays using within-array replications applied to neuroblastoma cell response to a cytokine, Proceedings of the National Academy of Science (2004) 1135-1140]. Using a backfitting method, [J. Fan, H. Peng, T. Huang, Semilinear high-dimensional model for normalization of microarray data: a theoretical analysis and partial consistency, Journal of American Statistical Association, 471, (2005) 781-798] proposed a profile least squares (PLS) estimation for the parametric and nonparametric components. The general asymptotic properties for their estimator is not developed. In this paper, we consider a new approach, two-stage estimation, which enables us to establish the asymptotic normalities for both of the parametric and nonparametric component estimators. We further propose a plug-in bandwidth selector using the asymptotic normality of the nonparametric component estimator. The proposed method allow for the modeling of the aggregated SLIMs case where we can explicitly show that taking the aggregated information into account can improve both of the parametric and nonparametric component estimator by the proposed two-stage approach. Some simulation studies are conducted to illustrate the finite sample performance of the proposed procedures.  相似文献   

15.
Risk bounds for model selection via penalization   总被引:11,自引:0,他引:11  
Performance bounds for criteria for model selection are developed using recent theory for sieves. The model selection criteria are based on an empirical loss or contrast function with an added penalty term motivated by empirical process theory and roughly proportional to the number of parameters needed to describe the model divided by the number of observations. Most of our examples involve density or regression estimation settings and we focus on the problem of estimating the unknown density or regression function. We show that the quadratic risk of the minimum penalized empirical contrast estimator is bounded by an index of the accuracy of the sieve. This accuracy index quantifies the trade-off among the candidate models between the approximation error and parameter dimension relative to sample size. If we choose a list of models which exhibit good approximation properties with respect to different classes of smoothness, the estimator can be simultaneously minimax rate optimal in each of those classes. This is what is usually called adaptation. The type of classes of smoothness in which one gets adaptation depends heavily on the list of models. If too many models are involved in order to get accurate approximation of many wide classes of functions simultaneously, it may happen that the estimator is only approximately adaptive (typically up to a slowly varying function of the sample size). We shall provide various illustrations of our method such as penalized maximum likelihood, projection or least squares estimation. The models will involve commonly used finite dimensional expansions such as piecewise polynomials with fixed or variable knots, trigonometric polynomials, wavelets, neural nets and related nonlinear expansions defined by superposition of ridge functions. Received: 7 July 1995 / Revised version: 1 November 1997  相似文献   

16.
Ledford and Tawn (1997) introduced a flexible bivariate tail model based on the coefficient of tail dependence and on the dependence of the extreme values of the random variables. In this paper, we extend the concept by specifying the slowly varying part of the model as done by Hall (1982) with the univariate case. Based on Beirlant et al. (2009), we propose a bias-reduced estimator for the coefficient of tail dependence and for the estimation of small tail probabilities. We discuss the properties of these estimators via simulations and a real-life example. Furthermore, we discuss some theoretical asymptotic aspects of this approach.  相似文献   

17.
This paper focuses on the variable selections for semiparametric varying coefficient partially linear models when the covariates in the parametric and nonparametric components are all measured with errors. A bias-corrected variable selection procedure is proposed by combining basis function approximations with shrinkage estimations. With appropriate selection of the tuning parameters, the consistency of the variable selection procedure and the oracle property of the regularized estimators are established. A simulation study and a real data application are undertaken to evaluate the finite sample performance of the proposed method.  相似文献   

18.
In this paper, we investigate the empirical likelihood for constructing a confidence region of the parameter of interest in a multi-link semiparametric model when an infinite-dimensional nuisance parameter exists. The new model covers the commonly used varying coefficient, generalized linear, single-index, multi-index, hazard regression models and their generalizations, as its special cases. Because of the existence of the infinite-dimensional nuisance parameter, the classical empirical likelihood with plug-in estimation cannot be asymptotically distribution-free, and the existing bias correction is not extendable to handle such a general model. We then propose a link-based correction approach to solve this problem. This approach gives a general rule of bias correction via an inner link, and consists of two parts. For the model whose estimating equation contains the score functions that are easy to estimate, we use a centering for the scores to correct the bias; for the model of which the score functions are of complex structure, a bias-correction procedure using simpler functions instead of the scores is given without loss of asymptotic efficiency. The resulting empirical likelihood shares the desired features: it has a chi-square limit and, under-smoothing technique, high order kernel and parameter estimation are not needed. Simulation studies are carried out to examine the performance of the new method.  相似文献   

19.
One major goal in clinical applications of multi-state models is the estimation of transition probabilities. In a recent paper, Meira-Machado et al. (2006) introduce a substitute for the Aalen-Johansen estimator in the case of a non-Markov illness-death model. The idea behind their estimator is to weight the data by the Kaplan-Meier weights pertaining to the distribution of the total survival time of the process. In this paper we propose a modification of Meira-Machado et al. (2006) estimator based on presmoothing. Consistency is established. We investigate the finite sample performance of the new estimator through simulations. Data from a study on colon cancer are used for illustration purposes.  相似文献   

20.
For the well-known Fay-Herriot small area model, standard variance component estimation methods frequently produce zero estimates of the strictly positive model variance. As a consequence, an empirical best linear unbiased predictor of a small area mean, commonly used in small area estimation, could reduce to a simple regression estimator, which typically has an overshrinking problem. We propose an adjusted maximum likelihood estimator of the model variance that maximizes an adjusted likelihood defined as a product of the model variance and a standard likelihood (e.g., a profile or residual likelihood) function. The adjustment factor was suggested earlier by Carl Morris in the context of approximating a hierarchical Bayes solution where the hyperparameters, including the model variance, are assumed to follow a prior distribution. Interestingly, the proposed adjustment does not affect the mean squared error property of the model variance estimator or the corresponding empirical best linear unbiased predictors of the small area means in a higher order asymptotic sense. However, as demonstrated in our simulation study, the proposed adjustment has a considerable advantage in small sample inference, especially in estimating the shrinkage parameters and in constructing the parametric bootstrap prediction intervals of the small area means, which require the use of a strictly positive consistent model variance estimate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号