共查询到20条相似文献,搜索用时 0 毫秒
1.
Esra Akdeniz Duran Hongchang Hu 《Journal of Computational and Applied Mathematics》2011,235(5):1418-1428
In this paper we consider the semiparametric regression model, y=Xβ+f+ε. Recently, Hu [11] proposed ridge regression estimator in a semiparametric regression model. We introduce a Liu-type (combined ridge-Stein) estimator (LTE) in a semiparametric regression model. Firstly, Liu-type estimators of both β and f are attained without a restrained design matrix. Secondly, the LTE estimator of β is compared with the two-step estimator in terms of the mean square error. We describe the almost unbiased Liu-type estimator in semiparametric regression models. The almost unbiased Liu-type estimator is compared with the Liu-type estimator in terms of the mean squared error matrix. A numerical example is provided to show the performance of the estimators. 相似文献
2.
Semiparametric linear transformation models have received much attention due to their high flexibility in modeling survival data. A useful estimating equation procedure was recently proposed by Chen et al. (2002) [21] for linear transformation models to jointly estimate parametric and nonparametric terms. They showed that this procedure can yield a consistent and robust estimator. However, the problem of variable selection for linear transformation models has been less studied, partially because a convenient loss function is not readily available under this context. In this paper, we propose a simple yet powerful approach to achieve both sparse and consistent estimation for linear transformation models. The main idea is to derive a profiled score from the estimating equation of Chen et al. [21], construct a loss function based on the profile scored and its variance, and then minimize the loss subject to some shrinkage penalty. Under regularity conditions, we have shown that the resulting estimator is consistent for both model estimation and variable selection. Furthermore, the estimated parametric terms are asymptotically normal and can achieve a higher efficiency than that yielded from the estimation equations. For computation, we suggest a one-step approximation algorithm which can take advantage of the LARS and build the entire solution path efficiently. Performance of the new procedure is illustrated through numerous simulations and real examples including one microarray data. 相似文献
3.
Muni S. Srivastava 《Journal of multivariate analysis》2010,101(9):1970-1980
In this paper, we consider the problem of selecting the variables of the fixed effects in the linear mixed models where the random effects are present and the observation vectors have been obtained from many clusters. As the variable selection procedure, here we use the Akaike Information Criterion, AIC. In the context of the mixed linear models, two kinds of AIC have been proposed: marginal AIC and conditional AIC. In this paper, we derive three versions of conditional AIC depending upon different estimators of the regression coefficients and the random effects. Through the simulation studies, it is shown that the proposed conditional AIC’s are superior to the marginal and conditional AIC’s proposed in the literature in the sense of selecting the true model. Finally, the results are extended to the case when the random effects in all the clusters are of the same dimension but have a common unknown covariance matrix. 相似文献
4.
A bias-corrected technique for constructing the empirical likelihood ratio is used to study a semiparametric regression model with missing response data. We are interested in inference for the regression coefficients, the baseline function and the response mean. A class of empirical likelihood ratio functions for the parameters of interest is defined so that undersmoothing for estimating the baseline function is avoided. The existing data-driven algorithm is also valid for selecting an optimal bandwidth. Our approach is to directly calibrate the empirical log-likelihood ratio so that the resulting ratio is asymptotically chi-squared. Also, a class of estimators for the parameters of interest is constructed, their asymptotic distributions are obtained, and consistent estimators of asymptotic bias and variance are provided. Our results can be used to construct confidence intervals and bands for the parameters of interest. A simulation study is undertaken to compare the empirical likelihood with the normal approximation-based method in terms of coverage accuracies and average lengths of confidence intervals. An example for an AIDS clinical trial data set is used for illustrating our methods. 相似文献
5.
Jian Chen 《Journal of multivariate analysis》2009,100(1):137-2480
Copula as an effective way of modeling dependence has become more or less a standard tool in risk management, and a wide range of applications of copula models appear in the literature of economics, econometrics, insurance, finance, etc. How to estimate and test a copula plays an important role in practice, and both parametric and nonparametric methods have been studied in the literature. In this paper, we focus on interval estimation and propose an empirical likelihood based confidence interval for a copula. A simulation study and a real data analysis are conducted to compare the finite sample behavior of the proposed empirical likelihood method with the bootstrap method based on either the empirical copula estimator or the kernel smoothing copula estimator. 相似文献
6.
In this paper we propose a dimension reduction method for estimating the directions in a multiple-index regression based on information extraction. This extends the recent work of Yin and Cook [X. Yin, R.D. Cook, Direction estimation in single-index regression, Biometrika 92 (2005) 371-384] who introduced the method and used it to estimate the direction in a single-index regression. While a formal extension seems conceptually straightforward, there is a fundamentally new aspect of our extension: We are able to show that, under the assumption of elliptical predictors, the estimation of multiple-index regressions can be decomposed into successive single-index estimation problems. This significantly reduces the computational complexity, because the nonparametric procedure involves only a one-dimensional search at each stage. In addition, we developed a permutation test to assist in estimating the dimension of a multiple-index regression. 相似文献
7.
Zhou (2010) introduced a multivariate Wilcoxon regression estimate which possesses some nice properties: computational ease, asymptotic normality and high efficiency. However, it is sensitive to the leverage points. To circumvent this problem, we propose a weighted multivariate Wilcoxon regression estimate. Under some regularity conditions, the asymptotic normality is established. We further study the robustness of the proposed estimate through the influence function. By properly choosing the weight functions, our results show that the corresponding estimate can have bounded influence function on both response and covariates. 相似文献
8.
We consider Bayesian shrinkage predictions for the Normal regression problem under the frequentist Kullback-Leibler risk function.Firstly, we consider the multivariate Normal model with an unknown mean and a known covariance. While the unknown mean is fixed, the covariance of future samples can be different from that of training samples. We show that the Bayesian predictive distribution based on the uniform prior is dominated by that based on a class of priors if the prior distributions for the covariance and future covariance matrices are rotation invariant.Then, we consider a class of priors for the mean parameters depending on the future covariance matrix. With such a prior, we can construct a Bayesian predictive distribution dominating that based on the uniform prior.Lastly, applying this result to the prediction of response variables in the Normal linear regression model, we show that there exists a Bayesian predictive distribution dominating that based on the uniform prior. Minimaxity of these Bayesian predictions follows from these results. 相似文献
9.
We consider adaptive maximum likelihood type estimation of both drift and diffusion coefficient parameters for an ergodic diffusion process based on discrete observations. Two kinds of adaptive maximum likelihood type estimators are proposed and asymptotic properties of the adaptive estimators, including convergence of moments, are obtained. 相似文献
10.
We consider a recurrent Markov process which is an Itô semi-martingale. The Lévy kernel describes the law of its jumps. Based on observations X0,XΔ,…,XnΔ, we construct an estimator for the Lévy kernel’s density. We prove its consistency (as nΔ→∞ and Δ→0) and a central limit theorem. In the positive recurrent case, our estimator is asymptotically normal; in the null recurrent case, it is asymptotically mixed normal. Our estimator’s rate of convergence equals the non-parametric minimax rate of smooth density estimation. The asymptotic bias and variance are analogous to those of the classical Nadaraya–Watson estimator for conditional densities. Asymptotic confidence intervals are provided. 相似文献
11.
Eun Ryung LeeByeong U. Park 《Journal of multivariate analysis》2012,105(1):1-17
As a useful tool in functional data analysis, the functional linear regression model has become increasingly common and been studied extensively in recent years. In this paper, we consider a sparse functional linear regression model which is generated by a finite number of basis functions in an expansion of the coefficient function. In this model, we do not specify how many and which basis functions enter the model, thus it is not like a typical parametric model where predictor variables are pre-specified. We study a general framework that gives various procedures which are successful in identifying the basis functions that enter the model, and also estimating the resulting regression coefficients in one-step. We adopt the idea of variable selection in the linear regression setting where one adds a weighted L1 penalty to the traditional least squares criterion. We show that the procedures in our general framework are consistent in the sense of selecting the model correctly, and that they enjoy the oracle property, meaning that the resulting estimators of the coefficient function have asymptotically the same properties as the oracle estimator which uses knowledge of the underlying model. We investigate and compare several methods within our general framework, via a simulation study. Also, we apply the methods to the Canadian weather data. 相似文献
12.
We present methods to handle error-in-variables models. Kernel-based likelihood score estimating equation methods are developed for estimating conditional density parameters. In particular, a semiparametric likelihood method is proposed for sufficiently using the information in the data. The asymptotic distribution theory is derived. Small sample simulations and a real data set are used to illustrate the proposed estimation methods. 相似文献
13.
The generalized information criterion (GIC) proposed by Rao and Wu [A strongly consistent procedure for model selection in a regression problem, Biometrika 76 (1989) 369-374] is a generalization of Akaike's information criterion (AIC) and the Bayesian information criterion (BIC). In this paper, we extend the GIC to select linear mixed-effects models that are widely applied in analyzing longitudinal data. The procedure for selecting fixed effects and random effects based on the extended GIC is provided. The asymptotic behavior of the extended GIC method for selecting fixed effects is studied. We prove that, under mild conditions, the selection procedure is asymptotically loss efficient regardless of the existence of a true model and consistent if a true model exists. A simulation study is carried out to empirically evaluate the performance of the extended GIC procedure. The results from the simulation show that if the signal-to-noise ratio is moderate or high, the percentages of choosing the correct fixed effects by the GIC procedure are close to one for finite samples, while the procedure performs relatively poorly when it is used to select random effects. 相似文献
14.
Lei Shi 《Journal of multivariate analysis》2008,99(9):1860-1877
This paper studies case deletion diagnostics for multilevel models. Using subset deletion, diagnostic measures for identifying influential units at any level are developed for both fixed and random parameters. Two approximate update formulae are derived. The first formula uses one-step approximation, while the second formula also includes the impact of estimating the random parameter. Two examples are used to illustrate the methodology developed. 相似文献
15.
A general approach for developing distribution free tests for general linear models based on simplicial depth is applied to multiple regression. The tests are based on the asymptotic distribution of the simplicial regression depth, which depends only on the distribution law of the vector product of regressor variables. Based on this formula, the spectral decomposition and thus the asymptotic distribution is derived for multiple regression through the origin and multiple regression with Cauchy distributed explanatory variables. The errors may be heteroscedastic and the concrete form of the error distribution does not need to be known. Moreover, the asymptotic distribution for multiple regression with intercept does not depend on the location and scale of the explanatory variables. A simulation study suggests that the tests can be applied also to normal distributed explanatory variables. An application on multiple regression for shape analysis of fishes demonstrates the applicability of the new tests and in particular their outlier robustness. 相似文献
16.
Hisayuki Tsukuma 《Journal of multivariate analysis》2010,101(6):1483-1492
This paper deals with the problem of estimating the mean matrix in an elliptically contoured distribution with unknown scale matrix. The Laplace and inverse Laplace transforms of the density allow us not only to evaluate the risk function with respect to a quadratic loss but also to simplify expressions of Bayes estimators. Consequently, it is shown that generalized Bayes estimators against shrinkage priors dominate the unbiased estimator. 相似文献
17.
The empirical likelihood method is especially useful for constructing confidence intervals or regions of parameters of interest. Yet, the technique cannot be directly applied to partially linear single-index models for longitudinal data due to the within-subject correlation. In this paper, a bias-corrected block empirical likelihood (BCBEL) method is suggested to study the models by accounting for the within-subject correlation. BCBEL shares some desired features: unlike any normal approximation based method for confidence region, the estimation of parameters with the iterative algorithm is avoided and a consistent estimator of the asymptotic covariance matrix is not needed. Because of bias correction, the BCBEL ratio is asymptotically chi-squared, and hence it can be directly used to construct confidence regions of the parameters without any extra Monte Carlo approximation that is needed when bias correction is not applied. The proposed method can naturally be applied to deal with pure single-index models and partially linear models for longitudinal data. Some simulation studies are carried out and an example in epidemiology is given for illustration. 相似文献
18.
We consider a stationary Markov renewal process whose inter-arrival time density depends multiplicatively on the distance between the past and present state of the embedded chain. This is appropriate when the jump size is governed by influences that accumulate over time. Then we can construct an estimator for the inter-arrival time density that has the parametric rate of convergence. The estimator is a local von Mises statistic. The result carries over to the corresponding semi-Markov process. 相似文献
19.
Takashi Seo 《Journal of multivariate analysis》2006,97(9):1976-1983
In this paper, we consider simultaneous confidence intervals for all contrasts in the means when the observations are missing at random in the intraclass correlation model. An exact test statistic for the equality of the means and Scheffé, Bonferroni and Tukey types of simultaneous confidence intervals are given by an extension of Bhargava and Srivastava [On Tukey's confidence intervals for the contrasts in the means of the intraclass correlation model, J. Royal Statist. Soc. B35 (1973) 147-152] when the missing observations are of the monotone type. Finally, numerical results of simultaneous confidence intervals are presented. 相似文献
20.
Jinho Park 《Journal of multivariate analysis》2004,89(1):70-86
In this paper we consider nonparametric regression with left-truncated and right-censored data. An estimator of the regression function is developed when censoring and truncation are independent of covariates and the response. The estimation is based on the product limit estimator of the response variable. Under certain conditions, the L2 rate of convergence of the estimated regression function is obtained when tensor products of B-splines are used. 相似文献