首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemically durable and effective absorbent materials for selenite (SeO32?) remain highly desirable for contamination remediation. Now a bismuth‐based metal–organic framework (Bi‐MOF, CAU‐17) was used as adsorbent to capture SeO32? anions from aqueous solution with ultrahigh adsorption capacity of 255.3 mg g?1 and fast kinetics. Furthermore, the adsorbent showed excellent selectivity for SeO32? and was able to work steadily in a broad pH range of 4–11. Density functional theory (DFT) calculation, XANES modeling, and EXAFS fitting suggested that SeO32? anions were immobilized by forming Bi?O?Se bonds (T‐3 structural model) though splitting the O?Bi?O bond in the crystal structure, leading to a structural transformation of CAU‐17 in the solid state.  相似文献   

2.
Uranyl selenite, precipitated from an uranyl solution by selenous acid, redissolves in excess acid to yield a binegative apparently octahedral, anionic complex.The compounds UO2SeO3(I), (NH4)2[(UO2)2(SeO3)3(H2O)6](II), (NH4)2[UO2(SeO3)2](III), K2[(UO2)2(SeO3)3(H2O)2](IV) and K2[UO2(SeO3)2(H2O)2]H2O(V) have been prepared and analysed. On basis of their thermal, IR, Raman and X-ray diffraction studies and other properties, a polymeric structure involving bridging oxygen atoms has been suggested.  相似文献   

3.
Mixed rare earth hydrogen selenite crystals, neodymium praseodymium hydrogen selenite (NdxPr1−x(HSeO3)(SeO3)⋅2H2O), Neodymium samarium hydrogen selenite (NdxSm1−x(HSeO3)(SeO3)⋅2H2O) and praseodymium samarium hydrogen selenite (PrxSm1−x(HSeO3)(SeO3)⋅2H2O) were prepared by gel diffusion technique. Simultaneous thermogravimetric and differential thermal analysis were carried out on the grown crystals. Decomposition is observed to occurs in six steps, which gives the evidence of successive losses of H2O and SeO2. The final product due to decomposition is a mixed rare earth oxides. FT-IR spectrum of the crystal samples heated at different temperatures complemented to the TG-DTA results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
 A quartz crystal microbalance (QCM) sensor for selenite ions in aqueous solution was constructed based on crystal formation of cadmium selenite, immobilized with a self-assembly monolayer (SAM) of phosphorylated 11-mercapto-1-undecanol (MUD) on a QCM gold electrode surface. The mass change caused by the selective adsorption of selenite ions on the cadmium selenite crystals at the solid/solution interface was detected by the QCM. The response (−ΔF) of the modified QCM oscillator increased with increasing selenite ion concentrations in sample solutions, ranging from 9.7×10−5 to 9.0×10−4 M at pH 7.4. The synthetic process of anchoring cadmium selenite crystals on the phosphorylated MUD organic film was also followed by using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The atomic concentrations measured by XPS confirmed the crystal growth of cadmium selenite on the phosphorylated MUD SAM at the QCM gold electrode surface. From the AFM images, changes in surface topographic features were followed: the MUD SAM and phosphorylated MUD on the QCM gold electrode had similar surface roughness; however the difference for the cadmium selenite film on the phosphorylated MUD SAM was clearly seen. The observed QCM frequency change of the modified QCM oscillator per unit time was found to be proportional to the square of the supersaturation of cadmium selenite, indicating the crystal growth of cadmium selenite at the solid/solution interface. The modified QCM oscillator exhibited selectively strong QCM response to SeO3 2− ion. In contrast, the responses to tested interfering anions were almost negligible. The order of anion selectivities of the present modified QCM sensor was SeO3 2−≫CO3 2−>SeO2− 4, SO4 2−, Br, I, NO3 . These selectivities were basically attributable to the differences in solubility products and solubilities for the salts of each anion with cadmium (II) ion. Received May 12, 1998. Revision December 29, 1998.  相似文献   

5.
Summary Conditions are described for the quantitative precipitation of bismuthyl dichromate, (BiO)2Cr2O7, and the suitability of this reaction for the gravimetric estimation of bismuth is shown. The use of arsenious oxide as a primary standard for the iodometric titration of excess chromate is emphasised.Sincere thanks of the authors are due to Prof. S. S. Joshi for research facilities and to Dr. G. S. Deshmukh for keen interest in the work.  相似文献   

6.
The first examples of bismuth fluoride selenites with d0-TM/TeVI polyhedrons, namely, Bi4TiO2F4(SeO3)4 ( 1 ), Bi4NbO3F3(SeO3)4 ( 2 ), Bi4TeO4F2(TeO3)2(SeO3)2 ( 3 ), Bi2F2(MoO4)(SeO3) ( 4 ) and Bi2ZrO2F2(SeO3)2 ( 5 ) have been successfully synthesized under hydrothermal reactions by aliovalent substitution. The five new compounds feature three different types of structures. Compounds 1 – 3 , containing TiIV, NbV and TeVI respectively, are isostructural, exhibiting a new 3D framework composed of a 3D bismuth oxyfluoride architecture, with intersecting tunnels occupied by d0-TM/TeVI octahedrons and selenite/tellurite groups. Interestingly, compound Bi4TeO4F2(TeO3)2(SeO3)2 ( 3 ) is the first structure containing SeIV and mixed-valent TeIV/TeVI cations simultaneously. Compound 4 features a new 3D structure formed by a 3D bismuth oxyfluoride network with MoO4 tetrahedrons and selenites groups imbedded in the 1D tunnels. Compound 5 displays a novel pillar-layered 3D open framework, consisting of 2D bismuth oxide layers bridged by the [ZrO2F2(SeO3)2]6− polyanions. Theoretical calculations revealed that the five compounds displayed very strong birefringence. The birefringence values of compounds 1 – 3 , especially, are above 0.19 at 1064 nm, which are larger than the mineral calcite. Based on the structure and property analysis, it was found that the asymmetric SeO3 groups (and TeO3 in compound 3 ) displayed the largest anisotropy, compared with the bismuth cations and the d0-TM/Te polyhedra, which is beneficial to the birefringence.  相似文献   

7.
To understand the fate of 79Se in a repository-like environment, the interactions between iron canister surface with dissolved selenite (SeO3 2−) and selenate (SeO4 2−) in anaerobic solutions have been investigated. Se(IV) immobilization on iron surface was observed to be about 100 times faster than that of Se(VI) at same conditions. An iron surface coated with a FeCO3 layer corrosion product is more reactive than a polished iron to immobilize Se(IV) and Se(VI). The reacted iron surfaces were analysed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Raman spectrometry and micro-X-ray Absorption Spectroscopy (XAS). The result show that Se(IV) and Se(VI) were reduced and precipitated. The dominating phase was found to be FeSe2.  相似文献   

8.
Summary It has been observed that mercury can be quantitatively precipitated by Diallyldithiocarbamidohydrazine (Dalzin) at a pH of 3–3.5. It has been separated from nickel, zinc, lead, copper, cadmium and bismuth. The latter three have been kept in solution with the help of EDTA.Part. II: Dutt, N. K., and K. P. Sen Sarma: Anal. chim. Acta (Amsterdam) 15, 102 (1956); cf. Z. analyt. Chem. 155, 353 (1957).  相似文献   

9.
《Analytical letters》2012,45(20):1609-1619
Abstract

Spectrophotometric data used in connection with HA acidity function yield pK1=?3.3(K1= [H2SeO3][H+]/[H3SeO3 +]);potentiometric and spectral measurements give for pK2 and pK3 data in agreement with the literature. At pH > 10 selenite undergoes a fast photochemical reaction, preceded by a rapidly established acid-base equilibrium. Products of this reaction undergo a slow reaction which is second order in selenite.  相似文献   

10.
It is a great challenge to develop UV nonlinear optical (NLO) material due to the demanding conditions of strong second harmonic generation (SHG) intensity and wide band gap. The first ultraviolet NLO selenite material, Y3F(SeO3)4, has been obtained by control of the fluorine content in a centrosymmetric CaYF(SeO3)2. The two new compounds represent similar 3D structures composed of 3D yttrium open frameworks strengthened by selenite groups. CaYF(SeO3)2 has a large birefringence (0.138@532 nm and 0.127@1064 nm) and a wide optical band gap (5.06 eV). The non-centrosymmetric Y3F(SeO3)4 can exhibit strong SHG intensity (5.5×KDP@1064 nm), wide band gap (5.03 eV), short UV cut-off edge (204 nm) and high thermal stability (690 °C). So, Y3F(SeO3)4 is a new UV NLO material with excellent comprehensive properties. Our work shows that it is an effective method to develop new UV NLO selenite material by fluorination control of the centrosymmetric compounds.  相似文献   

11.
Summary Oxidation of selenite to selenate by alkaline ferricyanide catalysed by osmium tetroxide was followed by direct and indirect procedures. Either the ferrocyanide was titrated with selenite solution at 8–10% overall alkalinity or vice versa using amperometric or potentiometric end point. In the indirect procedure the excess ferricyanide was determined by amperometric titration with arsenious oxide at 10–15% alkalinity, and the ferrocyanide with ceric sulphate using o-phenanthroline or amperometric indicator. A cerimetric determination of ferricyanide based on this reaction is described.Sincere thanks of the authors are due to Dr. S. S. Joshi, D. Sc. (London), for kind interest in the work.  相似文献   

12.
The purpose of present study is to fabrication of a magmolecule (amino-functionalized magnetite nanoparticles) and evaluation of its adsorption capacity for selenite (SeO3 2?) ions from nuclear wastewater. To accomplish this, synthesized magnetite nanoparticles is coated with a layer of SiO2 in order to be chemically stable and then functionalized with 3-aminopropyl triethoxysilane (APTES) to be more effective. Adsorption of SeO3 2? ions was investigated in batch technique. The effect of parameters such as solution pH, presence of competing anions using sulfuric acid and nitric acid (NO3 ?, HSO4 ? and SO4 2?) and temperature were studied. Maximum adsorption occurred at pH 2.4 for magnetite (naked nanoparticle) and 1.7 for functionalized nanoparticles, while the dose of adsorbent was 1 g/L and selenite ion concentration was 50 mg/L. sulfuric acid was selected as the better acidic agent for controlling pH of solution. Thermodynamic parameters were also calculated and it has been found that the adsorption was endothermic. The obtained result showed that the naked particles had more adsorption capacity but it has been suggested usage of functionalized particles in the magmolecule process duo to stability and reusable capability.  相似文献   

13.
A new dimorphic copper selenite bromide, Cu5(SeO3)4Br2 was obtained via chemical transport reactions. α-Cu5(SeO3)4Br2, monoclinic (1m) and β-Cu5(SeO3)4Br2, triclinic (1a) polymorphs were produced simultaneously upon reaction of amorphous, partially dehydrated copper selenite and copper bromide. 1m is similar to Cu5(SeO3)4Cl2, whereas 1a is distantly related to Ni5(SeO3)4Br2 and Co5(SeO3)4Br2. Attempts to reproduce synthesis of 1a via exchange reaction between Na2SeO3 and CuBr2 resulted in a new Na2[Cu7O2](SeO3)4Br4 (2). Current study demonstrates for the first time, that both chemical vapor and exchange reactions can be employed in preparation of new selenite halides.  相似文献   

14.
Although the selenite ion, SeO2-3 is an inefficient scavenger of excess electrons (e-m, e-dry) generated in irradiated alkali metal hydroxide aqueous glasses at low temperatures, post-irradiation photostimulation of trapped electrons (e-t) in irradiated NaOH (10 M) glasses containing this chemical additive leads, unexpectedly, to the formation of SeO-2 radical anions.  相似文献   

15.
Pr4(SeO3)2(SeO4)F6 and NaSm(SeO3)(SeO4): Selenite‐Selenates of Rare Earth Elements Light green single crystals of Pr4(SeO3)2(SeO4)F6 have been obtained from the decomposition of Pr2(SeO4)3 in the presence of LiF in a gold ampoule. The monoclinic compound (C2/c, Z = 4, a = 2230.5(3), b = 710.54(9), c = 835.6(1) pm, β = 98.05(2)°, Rall = 0.0341) contains two crystallographically different Pr3+ ions. Pr(1)3+ is attached by six fluoride ions and two chelating SeO32– groups (CN = 10), Pr(2)3+ is surrounded by four fluoride ions, three monodentate SeO32– and two SeO42– groups. One of the latter acts as a chelating ligand, so the CN of Pr(2)3+ is 10. The selenite ions are themselves coordinated by five and the selenate ions by four Pr3+ ions. The coordination number of the F ions is three and four, respectively. The linkage of the coordination polyhedra leads to cavities in the crystal structure which incorporate the lone pairs of the selenite ions. The reaction of Sm2(SeO4)3 and NaCl in gold ampoules yielded light yellow single crystals of NaSm(SeO3)(SeO4). The monoclinic compound (P21/c, Z = 4, a = 1066.9(2), b = 691.66(8), c = 825.88(9) pm, β = 91.00(2)°, Rall = 0.0530) contains tenfold oxygen coordinated Sm3+ ions. The oxygen atoms belong to five SeO32– and two SeO42– ions. Two of the SeO32– groups as well as one of the SeO42– groups act as a chelating ligand. The sodium ions are surrounded by five SeO42– ions and one SeO32– group. One of the selenate ions is attached chelating leading to a coordination number of seven. Each selenite group is coordinated by six (5 × Sm3+ and 1 × Na+), each selenate ion by seven cations (5 × Na+ and 2 × Sm3+).  相似文献   

16.
The annealing of 75Se labelled SeO32− ion introduced into a K2SeO4 matrix (3 ppm) has been investigated. The analysis of the annealing curves shows the kinetics to be close to first order. Three different steps are observed for the annealing, which may correspond to different positions of the dopant ion in the matrix. The selenite ion anneals through the capture of a neighbouring oxygen ligand. Comparing with the thermal annealing of irradiated K2SeO4 leads to the conclusion that the SeO32− ion is not present as a coil species.  相似文献   

17.
Summary Quadrivalent selenium can be determined with fair accuracy by mixing with an excess of KMnO4 in the presence of 25–75 ml of 2% NaF solution and 4–7 ml of 9 N sulfuric acid. After leaving the reaction mixture for 10–30 minutes the excess KMnO4 is estimated by one of the following procedures: A) Titration of the excess KMnO4 with monovalent mercury, B) Adding an excess of Hg2 2+ solution to react with the excess KMnO4 followed by titrating the excess mercurous with KMnO4 solution.Part I: Issa, I. M., and M. Hamdy, Z. analyt. Chem. 172, 94 (1980).  相似文献   

18.
Zusammenfassung Für die im Prinzip bekannte gravimetrische Bestimmungsmethode von SeO3 2– und SeO4 2– in salzsaurer Lösung mit FeSO4 wird eine zuverlässige Vorschrift ausgearbeitet. Außerdem wird eine neue maßanalytische Bestimmungsmethode für SeO3 2– und SeO4 2– beschrieben. Die Nebeneinanderbestimmung von SeO3 2– und SeO4 2– nach diesem Verfahren gelingt mit Hilfe einer geeigneten Apparatur in einem Arbeitsgang.Für die Bestimmung von SeO3 2– in tellurhaltigen Lösungen wird eine Trennungsmöglichkeit angeführt.Dem Institutsvorstand, Herrn Prof. Dr. Robert Strebinger,, danke ich für das fördernde Interesse an dieser Arbeit.  相似文献   

19.
Mercury(I) selenite(IV) is polymorphic and crystallizes at least in three modifications, named α-, β-and γ-Hg2SeO3. Polycrystalline β-Hg2SeO3 was prepared by precipitation of a concentrated mercurous nitrate solution with selenous acid. Hydrothermal treatment of the colorless β-Hg2SeO3 powder in demineralized water at 250°C (10 days) yields light-yellow single crystals of α-Hg2SeO3 which show the highest density of the three modifications. Colorless needle-shaped single crystals of β-Hg2SeO3 and very few single crystals of γ-Hg2SeO3 co-crystallize from strongly diluted Hg2(NO3)2 and H2SeO3 solutions and were grown by a diffusion technique. All crystal structures were solved and refined from single crystal diffractometer data sets and are based on Hg22+ dumbbells and trigonal pyramidal SeO32− anions as the main building units. A common structural feature of all modifications is the formation of open channels extending parallel to the shortest crystallographic axis. The non-bonding orbitals of the SeIV atoms are stereochemically active and protrude into the channels. Upon heating in an open system under N2 atmosphere, both α- and β-Hg2SeO3 decompose in a well-separated three-step mechanism. The first step (T > 250°C) involves disproportionation into elementary mercury and α-HgSeO3 which at ca. 400°C subsequently transforms into β-HgSeO3. The second step between T = 400 and 500°C is accompanied by a loss of Hg and SeO2 and the formation of the basic salt Hg3SeO6. In the third step, at temperatures between T = 500° and 600°C, this material decomposes completely. Upon heating in a closed system (sealed silica capillaries), β-Hg2SeO3 transforms between 320-340°C into the more dense α-Hg2SeO3 which on further heating likewise converts into elementary mercury and β-HgSeO3.  相似文献   

20.
The new nickel selenite chloride, Ni5(SeO3)4Cl2, was obtained by high-temperature solid state reaction of NiCl2, Ni2O3 and SeO2 in a 1:2:4 molar ratio at 700 °C in an evacuated quartz tube. Its structure was established by single-crystal X-ray diffraction. Ni5(SeO3)4Cl2 crystallizes in the triclinic system, space group P-1 (No. 2) with cell parameters of a=8.076(2), b=9.288(2), c=9.376(2) Å, α=101.97(3), β=105.60(3), γ=91.83(3)° and Z=2. All nickel(II) ions in Ni5(SeO3)4Cl2 are octahedrally coordinated by selenite oxygens or/and chloride anions (([Ni(1)O5Cl], [Ni(2)O4Cl2], [Ni(3)O5Cl], [Ni(4)O6] and [Ni(5)O4Cl]). The structure of the title compound features a condensed three-dimensional (3D) network built by Ni(II) ions interconnected by SeO32− anions as well as Cl anions. Magnetic property measurements show strong antiferromagnetic interaction between nickel(II) ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号