首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluated the propionic acid (HPr) production from crude glycerol (CG) (5000 mg L?1) in an anaerobic fluidized bed reactor (AFBR). Grounded tire particles (2.8–3.35 mm) were used as support material for microbial adhesion. The reactor was operated with hydraulic retention times (HRT) varying from 8 to 0.5 h under mesophilic (30 °C) conditions. The HPr was the main metabolite produced, increasing in composition from 66.5 to 99.6% by decreasing the HRT from 8 to 0.5 h. Other metabolic products were 1,3-propanediol, with a maximum of 29.4% with an HRT of 6 h, ethanol, acetic, and butyric acids. The decrease in HRT from 8 to 0.5 h decreased the HPr yield, with a maximum of 0.48?±?0.06 g HPr g COD?1 and an HRT of 6 h, and favored HPr productivity, with a maximum of 4.09?±?1.24 g L?1 h?1 and HRT of 0.5 h. In the biogas, the H2 content increased from 12.5 to 81.2% by decreasing the HRT from 8 to 0.5 h. These results indicate the potential application of the AFBR for HPr production using an immobilized mixed culture.  相似文献   

2.
This study evaluated the production of hydrogen and propionic acid in an expanded granular sludge bed (EGSB) reactor by co-fermentation of cheese whey (CW) and crude glycerol (CG). The reactor was operated at hydraulic retention time (HRT) of 8 h by changing the CW/CG ratio from 5:1 to 5:2, 5:3, 5:4, and 5:5. At the ratio of 5:5, HRT was reduced from 8 to 0.5 h. The maximum hydrogen yield of 0.120 mmol H2 g COD?1 was observed at the CW/CG ratio of 5:1. Increasing the CG concentration repressed hydrogen production in favor of propionic acid, with a maximum yield of 6.19 mmol HPr g COD?1 at the CW/CG ratio of 5:3. Moreover, by reducing HRT of 8 to 0.5 h, the hydrogen production rate was increased to a maximum value of 42.5 mL H2 h?1 L?1at HRT of 0.5 h. The major metabolites were propionate, 1,3-propanediol, acetate, butyrate, and lactate.  相似文献   

3.
The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration from 2 to 25 g L−1. The reactors were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 °C with an influent pH around 5.5 and an effluent pH of about 3.5. The AFBRs with a HRT of 2 h and a feed strength of 2, 4, and 10 g L−1 showed satisfactory H2 production performance, but the reactor fed with 25 g L−1 of glucose did not. The highest hydrogen yield value was obtained in the reactor with a glucose concentration of 2 g L−1 when it was operated at a HRT of 2 h. The maximum hydrogen production rate value was achieved in the reactor with a HRT of 1 h and a feed strength of 10 g L−1. The AFBRs operated with glucose concentrations of 2 and 4 g L−1 produced greater amounts of acetic and butyric acids, while AFBRs with higher glucose concentrations produced a greater amount of solvents.  相似文献   

4.
Multi-phase anaerobic reactor for H2 and CH4 production from paperboard mill wastewater was studied. The reactor was operated at hydraulic retention times (HRTs) of 12, 18, 24, and 36 h, and organic loading rates (OLRs) of 2.2, 1.5, 1.1, and 0.75 kg chemical oxygen demand (COD)/m3 day, respectively. HRT of 12 h and OLR of 2.2 kg COD/m3 day provided maximum hydrogen yield of 42.76?±?14.5 ml/g CODremoved and volumetric substrate uptake rate (?rS) of 16.51?±?4.43 mg COD/L h. This corresponded to the highest soluble COD/total COD (SCOD/TCOD) ratio of 56.25?±?3.3 % and the maximum volatile fatty acid (VFA) yield (YVFA) of 0.21?±?0.03 g VFA/g COD, confirming that H2 was mainly produced through SCOD conversion. The highest methane yield (18.78?±?3.8 ml/g CODremoved) and ?rS of 21.74?±?1.34 mgCOD/L h were achieved at an HRT of 36 h and OLR of 0.75 kg COD/m3 day. The maximum hydrogen production rate (HPR) and methane production rate (MPR) were achieved at carbon to nitrogen (C/N) ratio of 47.9 and 14.3, respectively. This implies the important effect of C/N ratio on the distinction between the dominant microorganism bioactivities responsible for H2 and CH4 production.  相似文献   

5.
The anaerobic treatment of soft drink wastewater (SDW) was studied in two laboratory reactors—a 1.8-L UASB reactor and a 3-L hybrid reactor-sludge bed containing a layer of polyurethane in the upper part, at 35°C. The highest organic loading rates (OLR) achieved were 13 and 16.5 g COD/L · D for hybrid and UASB reactors, respectively, with the treatment efficiency of about 80% for both reactors. Despite the higher treatment productivity achieved for the UASB reactor, its lower ability to generate a sufficient level of alkalinity led to difficulties in maintaining a stable operation performance. Therefore, the hybrid reactor seems to be indicated for OLR higher than 10 g COD/L · d and HRT lower than 1 D, from the point of view of reliability of these two systems. Both reactors can treat the SDW with pH influent up to 11.0. The feeding of reactors with higher pH influent values led to their quick failure because of alkali shock. The duration of the recovery period after alkali shock was about 1.5-2 mo.  相似文献   

6.
Operational practice of high-rate anaerobic bioreactors such as upflow anaerobic sludge bed (UASB) reactors is generally based on maximization of the biomass concentration and, in the case of more than one reactor compartment, operation in parallel. In this article, a modeling approach is used to postulate that the treatment performance of anaerobic bioreactors can be improved by simple operational measures. To achieve minimized effluent soluble substrate concentrations, operation of two reactors in series combined with active exchange of biomass between both reactors is suggested. In this way, substrate concentrations lower than the minimum achievable concentration in a completely mixed reactor can be achieved. It is furthermore suggested that maximized biomass concentrations (and solid retention times [SRTs]) do not necessarily lead to minimized effluent concentrations of organic material. At elevated SRTs, the soluble microbial products resulting from biomass turnover are shown to represent the main fraction of soluble organic material in the effluent of the reactor, limiting treatment efficiency.  相似文献   

7.
Efforts were made to assess the efficiency of an anaerobic filter packed with porous floating ceramic media and to identify the optimum operational condition of anaerobic filter as a pretreatment of swine wastewater for the subsequent biological removal of nitrogen and phosphorus. A stepwise decrease in hydraulic retention time (HRT) and an increase in organic loading rate (OLR) were utilized in an anaerobic filter reactor at mesophilic temperature (35°C). The optimum operating condition of the anaerobic filter was found to be at an HRT of 1 d. A soluble chemical oxygen demand (COD) removal efficiency of 62% and a total suspended solids removal efficiency of 39% at an HRT of 1 d were achieved with an OLR of 16.0 kg total COD/(m3·d), respectively. The maximum methane production rate approached 1.70 vol of biogas produced per volume of reactor per day at an HRT of 1 d. It was likely that the effluent COD/total Kjeldahl nitrogen ratio, of 22, the COD/total phosphorous ratio of 47, and the high effluent alkalinity >2500 mg/L as CaCO3 of the anaerobic filter operated at an HRT of 1 d was adequate for the subsequent biological removal of nitrogen and phosphorus.  相似文献   

8.
Fermentative H(2) production from soybean protein processing wastewater (SPPW) was investigated in a four-compartment anaerobic baffled reactor (ABR) using anaerobic mixed cultures under continuous flow condition in the present study. After being inoculated with aerobic activated sludge and operated at the inoculants of 5.98?gVSS?L(-1), COD of 5000?mg?L(-1), HRT of 16?h and temperature of (35?±?1) °C for 22?days, the ABR achieved stable ethanol-type fermentation. The specific hydrogen production rate of anaerobic activated sludge was 165?LH(2)?kg MLVSS(-1)?day(-1), the substrate conversion rate was 600.83?LH(2)?kg COD(-1)and the COD removal efficiency was 44.73% at the stable operation status. The ABR system exhibited a better stability and higher hydrogen yields than continuous stirring tank reactor under the same operational condition. The experimental data documented the feasibility of substrate degradation along with molecular H(2) generation utilizing SPPW as primary carbon source in the ABR system.  相似文献   

9.
In fermentative hydrogen production, the low-hydrogen-producing bacteria retention rate limits the suspended growth reactor productivity because of the long hydraulic retention time (HRT) required to maintain adequate bacteria population. Traditional bacteria immobilization methods such as calcium alginate entrapment have many application limitations in hydrogen fermentation, including limited duration time, bacteria leakage, cost, and so on. The use of chloroform-treated anaerobic granular sludge as immobilized hydrogen-producing bacteria in an immobilized hydrogen culture may be able to overcome the limitations of traditional immobilization methods. This paper reports the findings on the performance of fed-batch cultures and continuous cultures inoculated with chloroform-treated granules. The chloroform-treated granules were able to be reused over four fed-batch cultures, with pH adjustment. The upflow reactor packed with chloroform-treated granules was studied, and the HRT of the upflow reactor was found to be as low as 4 h without any decrease in hydrogen production yield. Initial pH and glucose concentration of the culture medium significantly influenced the performance of the reactor. The optimum initial pH of the culture medium was neutral, and the optimum glucose concentration of the culture medium was below 20 g chemical oxygen demand/L at HRT 4 h. This study also investigated the possibility of integrating immobilized hydrogen fermentation using chloroform-treated granules with immobilized methane production using untreated granular sludge. The results showed that the integrated batch cultures produced 1.01 mol hydrogen and 2 mol methane per mol glucose. Treating the methanogenic granules with chloroform and then using the treated granules as immobilized hydrogen-producing sludge demonstrated advantages over other immobilization methods because the treated granules provide hydrogen-producing bacteria with a protective niche, a long duration of an active culture, and excellent settling velocity. This integrated two-stage design for immobilized hydrogen fermentation and methane production offers a promising approach for modifying current anaerobic wastewater treatment processes to harvest hydrogen from the existing systems.  相似文献   

10.
Electricity production from brewery wastewater using dual-chamber microbial fuel cells (MFCs) with a tin-coated copper mesh in the anode was investigated by changing the hydraulic retention time (HRT). The MFCs were fed with wastewater samples from the inlet (inflow, MFC-1) and outlet (outflow, MFC-2) of an anaerobic digester of a brewery wastewater treatment plant. Both chemical oxygen demand removal and current density were improved by decreasing HRT. The best MFC performance was with an HRT of 0.5 d. The maximum power densities of 8.001 and 1.843 μW/cm2 were obtained from reactors MFC-1 and MFC-2, respectively. Microbial diversity at different condi-tions was studied using PCR-DGGE profiling of 16S rRNA fragments of the microorganisms from the biofilm on the anode electrode. The MFC reactor had mainlyGeobacter,Shewanella, andClostridium species, and some bacteria were easily washed out at lower HRTs. The fouling characteristics of the MFC Nafion membrane and the resulting degradation of MFC performance were examined. The ion exchange capacity, conductivity, and diffusivity of the membrane decreased significantly after foul-ing. The morphology of the Nafion membrane and MFC degradation were studied using scanning electron microscopy and attenuated total reflection-Fourier transform infrared spectroscopy.  相似文献   

11.
The effect of pH on hydrogen production from liquid swine manure supplemented with glucose by a mixed culture of fermentative bacteria in an anaerobic sequencing batch reactor was evaluated in this study. At 37 ± 1 °C, five pH values ranging from 4.7 to 5.9 at an increment of 0.3 were tested at a hydraulic retention time (HRT) of 16 h. The results showed that at this HRT, the optimal pH for hydrogen production was 5.0, under which the biogas comprised 33.57 ± 5.65% of hydrogen with a production rate of 8.88 ± 2.94 L-H2/day and a yield of 1.48 ± 0.49 L-H2/L liquid swine manure. The highest biomass concentration, highest butyric acid to acetic acid ratio, lowest propionic acid concentration, and the best stability were all found at pH 5.0, while the highest CH4 productivity was found at pH 5.9. For efficient hydrogen production, oxygen content should be controlled under 2%, beyond which an inverse linear relationship (R 2 = 0.986) was observed.  相似文献   

12.
A mechanically stirred anaerobic sequencing batch reactor containing anaerobic biomass immobilized on polyurethane foam cubes, treating low-strength synthetic wastewater (500 mg COD L?1), was operated under different operational conditions to assess the removal of organic matter and sulfate. These conditions were related to fill time, defined by the following feed strategies: batch mode of 10 min, fed-batch mode of 3 h and fed-batch mode of 6 h, and COD/[SO4 2?] ratios of 1.34, 0.67, and 0.34 defined by organic matter concentration of 500 mg COD L?1 and sulfate concentrations of 373, 746, and 1,493 mg SO4 2? L?1 in the influent. Thus, nine assays were performed to investigate the influence of each of these parameters, as well as the interaction effect, on the performance of the system. The reactor operated with agitation of 400 rpm, total volume of 4.0 L, and treated 2.0 L synthetic wastewater in 8-h cycles at 30?±?1°C. During all assays, the reactor showed operational stability in relation to the monitored variables such as COD, sulfate, sulfide, sulfite, volatile acids, bicarbonate alkalinity, and solids, thus demonstrating the potential to apply this technology to the combined removal of organic matter and sulfate. In general, the results showed that the 3-h fed-batch operation with a COD/[SO4 2?] ratio of 0.34 presented the best conditions for organic matter removal (89%). The best efficiency for sulfate removal (71%) was accomplished during the assay with a COD/[SO4 2?] ratio of 1.34 and a fill time of 6 h. It was also observed that as fill time and sulfate concentration in the influent increased, the ratio between removed sulfate load and removed organic load also increased. However, it should be pointed out that the aim of this study was not to optimize the removal of organic matter and sulfate, but rather to analyze the behavior of the reactor during the different feed strategies and applied COD/[SO4 2?] ratios, and mainly to analyze the interaction effect, an aspect that has not yet been explored in the literature for batch reactors.  相似文献   

13.
Anaerobic sequencing batch reactors containing granular or flocculent biomass have been employed successfully in the treatment of piggery wastewater. However, the studies in which these reactors were employed did not focus specifically on accelerating the hydrolysis step, even though the degradation of this chemical oxygen demand (COD) fraction is likely to be the limiting step in many investigations of this type of wastewater. The mechanically stirred anaerobic sequencing batch biofilm reactor offers an alternative for hastening the hydrolysis step, because mechanical agitation can help to speed up the reduction of particle sizes in the fraction of particulate organic matter. In the present study, a 4.5-L reactor was operated at 30°C, with biomass immobilized on cubic polyurethane foam matrices (1 cm of side) and mechanical stirring provided by three flat-blade turbines (6 cm) at agitation rates varying from 0 to 500 rpm. The reactor was operated to treat diluted swine waste, and mechanical stirring efficiently improved degradation of the suspended COD. The operational data indicate that the reactor remained stable during the testing period. After 2 h of operation at 500 rpm, the suspended COD decreased by about 65% (from 1500 to 380 mg/L). Apparent kinetic constants were also calculated by modified first-order expressions.  相似文献   

14.
An investigation was performed regarding the application of a mechanically stirred anaerobic sequencing batch biofilm reactor containing immobilized biomass on inert polyurethane foam (AnSBBR) to the treatment of soluble metalworking fluids to remove organic matter and produce methane. The effect of increasing organic matter and reactor fill time, as well as shock load, on reactor stability and efficiency have been analyzed. The 5-L AnSBBR was operated at 30?°C in 8-h cycles, agitation of 400 rpm, and treated 2.0 L effluent per cycle. Organic matter was increased by increasing the influent concentration (500, 1,000, 2,000, and 3,000 mg chemical oxygen demand (COD)/L). Fill times investigated were in the batch mode (fill time 10 min) and fed-batch followed by batch (fill time 4 h). In the batch mode, organic matter removal efficiencies were 87%, 86%, and 80% for influent concentrations of 500, 1,000, and 2,000 mgCOD/L (1.50, 3.12, and 6.08 gCOD/L.d), respectively. At 3,000 mgCOD/L (9.38 gCOD/L.d), operational stability could not be achieved. The reactor managed to maintain stability when a shock load twice as high the feed concentration was applied, evidencing the robustness of the reactor to potential concentration variations in the wastewater being treated. Increasing the fill time to 4 h did not improve removal efficiency, which was 72% for 2,000 mgCOD/L. Thus, gradual feeding did not improve organic matter removal. The concentration of methane formed at 6.08 gCOD/L was 5.20 mmolCH4, which corresponded to 78% of the biogas composition. The behavior of the reactor during batch and fed-batch feeding could be explained by a kinetic model that considers organic matter consumption, production, and consumption of total volatile acids and methane production.  相似文献   

15.
Electron beam pretreatment of sewage sludge before anaerobic digestion   总被引:7,自引:0,他引:7  
The pretreatment of waste-activated sludge (WAS) by electron beam irradiation was studied in order to improve anaerobic sludge digestion. The irradiation dose of the electron beam was varied from 0.5 to 10 kGy. Batch and continuous-flow stirred tank reactors (CFSTRs) were operated to evaluate the effect of the electron beam pretreatment on anaerobic sludge digestion. Approximately 30–52% of the total chemical oxygen demand (COD) content of the WAS was solubilized within 24 h after electron beam irradiation. A large quantity of soluble COD, protein, and carbohydrates leached out from cell ruptures caused by the electron beam irradiation. Volatile fatty acids production from the irradiated sludge was approx 90% higher than that of the unirradiated sludge. The degradation of irradiated sewage sludge was described by two distinct first-order decay rates (k 1 and k 2). Most initial decay reaction accelerated within 10 d, with an average k 1 of 0.06/d for sewage sludge irradiated at all dosages. The mean values for the long-term batch first-order decay coefficient (k 2) were 0.025/d for irradiated sewage sludge and 0.007/d for unirradiated sludge. Volatile solids removal efficiency of the control reactor fed with unirradiated sewage sludge at a hydraulic retention time (HRT) of 20 d was almost the same as that of the CFSTRs fed with irradiated sludge at an HRT of 10 d. Therefore, disintegration of sewage sludge cells using electron beam pretreatment could reduce the reactor solid retention time by half.  相似文献   

16.
Many lab-scale studies have been carried out regarding the effect of feed strategy on the performance of anaerobic sequencing batch reactors (ASBR); however, more detailed pilot-scale studies should be performed to assess the real applicability of this type of operation. Therefore, the objective of this work was to assess the effect of feed strategy or fill time in a 1-m3 mechanically stirred pilot-scale sequencing batch reactor, treating 0.65 m3 sanitary wastewater in 8-h cycles at ambient temperature. Two reactor configurations were used: one containing granular biomass (denominated ASBR) and the other immobilized biomass on polyurethane foam as inert support (denominated anaerobic sequencing batch biofilm reactor (AnSBBR)). The reactors were operated under five distinct feed strategies, namely: typical batch and fed-batch for 25%, 50%, 75%, and 100% of the cycle length. Stirring frequency in the ASBR was 40 rpm with two flat-blade turbine impellers and 80 rpm in the AnSBBR with two helix impellers. The results showed that both the ASBR and AnSBBR when operated under typical batch, fed-batch for 50% and 75% of the cycle length, presented improved organic matter removal efficiencies, without significant differences in performance, thus showing important operational flexibility. In addition, the reactors presented operation stability under all conditions.  相似文献   

17.
The anaerobic treatment of raw vinasse in a combined system consisting in two methanogenic reactors, up-flow anaerobic sludge blanket (UASB) + anaerobic packed bed reactors (APBR), was evaluated. The organic loading rate (OLR) was varied, and the best condition for the combined system was 12.5 kg COD m?3day?1 with averages of 0.289 m3 CH4 kg COD r?1for the UASB reactor and 4.4 kg COD m?3day?1 with 0.207 m3 CH4 kg COD r?1 for APBR. The OLR played a major role in the emission of H2S conducting to relatively stable quality of biogas emitted from the APBR, with H2S concentrations <10 mg L?1. The importance of the sulphate to COD ratio was demonstrated as a result of the low biogas quality recorded at the lowest ratio. It was possible to develop a proper anaerobic digestion of raw vinasse through the combined system with COD removal efficiency of 86.7% and higher CH4 and a lower H2S content in biogas.  相似文献   

18.
A microbial community able to aerobically degrade the azo dye Acid Orange 7 was selected from riparian or lacustrine sediments collected at sites receiving textile wastewaters. Three bacterial strains, pertaining to the genera Pseudomonas, Arthrobacter, and Rhizobium, constitute the selected community. The biodegradation of AO7 was carried out in batch-suspended cell culture and in a continuously operated multistage packed-bed BAC reactor. The rapid decolorization observed in batch culture, joined to a delay of about 24 h in COD removal and cell growth, suggests that enzymes involved in biodegradation of the aromatic amines generated after AO7 azo-bond cleavage (1-amino-2-naphthol [1-A2N] and 4-aminobenzenesulfonic acid [4-ABS]), are inducible in this microbial consortium. After this presumptive induction period, the accumulated byproducts, measured through COD, were partially metabolized and transformed in cell mass. At all azo dye loading rates used, complete removal of AO7 and 1-A2N was obtained in the multistage packed-bed BAC reactor (PBR).; however, the overall COD (η COD ) and 4-ABS (η ABS ) removal efficiencies obtained in steady state continuous culture were about 90%. Considering the toxicity of 1-A2N, its complete removal has particular relevance. In the first stages of the packed-bed BAC reactor (Fig. 4a–c), major removal was observed. In the last stage, only a slight removal of COD and 4-ABS was obtained. Comparing to several reported studies, the continuously operated multistage packed-bed BAC reactor showed similar or superior results. In addition, the operation of large-packed-bed BAC reactors could be improved by using several shallow BAC bed stages, because the pressure drop caused by bed compaction of a support material constituted by small and fragile particles can be reduced.  相似文献   

19.
An innovative pilot-scale phototrophic biofilm reactor was evaluated over a 5-month period to determine its capacity to remove nitrogen and phosphorus from Dutch municipal wastewater effluents. The areal biomass production rate ranged between 2.7 and 4.5 g dry weight/m2/day. The areal nitrogen and phosphorus removal rates averaged 0.13 g N/m2/day and 0.023 g P/m2/day, which are low compared to removal rates achieved in laboratory biofilm reactors. Nutrient removal increased during the day, decreased with decreasing light intensity and no removal occurred during the night. Additional carbon dioxide supply was not requisite as the wastewater was comprised of enough inorganic carbon to sustain microalgal growth. The study was not conclusive for the limiting factor that caused the low nutrient removal rate, possibly the process was limited by light and temperature, in combination with pH increases above pH 9 during the daytime. This pilot-scale study demonstrated that the proposed phototrophic biofilm reactor is not a viable post-treatment of municipal wastewater effluents under Dutch climate conditions. However, the reactor performance may be improved when controlling the pH and the temperatures in the morning. With these adaptations, a phototrophic biofilm reactor could be feasible at lower latitudes with higher irradiance levels.  相似文献   

20.
Anaerobic treatment of low-strength brewery wastewater, with influent total chemical oxygen demand (COD) (CODin) concentrations ranging from 550 to 825 mg/L, was investigated in a pilot-scale 225.5-L expanded granular sludge bed (EGSB) reactor. In an experiment in which the temperature was lowered stepwise from 30 to 12 degrees C, the COD removal efficiency decreased from 73 to 35%, at organic loading rates (OLR) of 11-16.5 g COD/L/d. The applied hydraulic retention time (HRT) and liquid upflow velocity (Vup) were 1.2 h and 5.8 m/h, respectively. Under these conditions, the acidified fraction of the CODin varied from 45 to 90%. In addition to the expected drop in reactor performance, problems with sludge retention were also observed. In a subsequent experiment set at 20 degrees C, COD removal efficiencies exceeding 80% were obtained at an OLR up to 12.6 g COD/L/d, with CODin between 630 and 715 mg/L. The values of HRT and Vup applied were 2.1-1.2 h, and 4.4-7.2 m/h, respectively. The acidified fraction of the CODin was above 90%, but sludge washout was not significant. These results indicate that the EGSB potentials can be further explored for the anaerobic treatment of low-strength brewery wastewater, even at lower temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号