首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《中国化学快报》2020,31(10):2567-2574
Sulfur-driven autotrophic denitrification (SDAD), a process suited for the treatment of nitrogen and sulfur-polluted wastewater without extra supplement of organic carbon, is a promising biological nitrogen removal process. However, the SDAD process was affected by many factors such as various electron donors, organic carbon and exogenous substances (e.g., antibiotics and heavy metal), which prevent further application. Thus, we conducted a detailed review of previous studies on such influence factors and its current application. Besides, a comparative analysis was adopted to recognize the current challenges and future needs for feasible application, so as to ultimately perfect the SDAD process and extend its application scope.  相似文献   

2.
The effect of dissolved oxygen (DO) and agitation rate in open and closed reactors was examined for sulfur-utilizing autotrophic denitrification. The reaction rate constants were determined based on a half-order kinetic model. Declining denitrification rate constants obtained for open reactors those of 8.46, 8.03, and 2.18 for 50 mg NO3 ?-N/L, while 11.12, 9.14, and 0.12 mg1/2/L1/2?h were for 100 mg NO3 ?-N/L at agitation speeds of 0, 100, and 200 rpm. In closed reactors, the ever-increasing denitrification rates were 10.13, 22.56, and 37.03, whereas for the same nitrate concentrations and speeds the rates were 13.17, 15.63, and 26.67 mg1/2/L1/2?h. The rate constants correlated well (r 2 ?=?0.89–0.99) with a half-order kinetic model. In open reactors, high SO4 2?/N ratios (8.02–75.10) while in closed reactors comparatively low SO4 2?/N ratios (6.10–13.39) were obtained. Sulfur oxidation occurred continuously in the presence of DO, resulting in mixed cultures acclimated to sulfur and nitrate. SO4 2? was produced as an end product, which reduced alkalinity and lowered pH over time. Furthermore, DO inhibited sulfur denitrification in open reactors, while agitation in closed reactors increased the rate of denitrification.  相似文献   

3.
This work reports on the removal of organic matter and nitrogen in a radial-flow aerobic-anoxic immobilized biomass (RAIB) reactor fed with domestic sewage pretreated in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor. Polyurethane foam was used as support material for biomass attachment in both reactors. In batch experiments, a first-order kinetic model with residual concentration represented the organic matter removal rate, whereas nitrogen conversion followed a pseudo-first-order reaction in series model, with kinetic constants k 1 (ammonium to nitrite) and k 2 (nitrite to nitrate) of 0.25 and 6.62 h−1, respectively. The RAIB reactor was operated in continuous-flow mode and changes in the airflow rate and hydraulic retention time were found to interfere in the apparent kinetic constants to the nitritation (k 1) and nitratation (k 2). Nitrification and denitrification were achieved in the partially aerated RAIB reactor operating with hydraulic retention times of 3.3 h and 2.7 h in the aerobic and anoxic zones, respectively. Ethanol was added in the anoxic zone of the reactor to promote denitrification. The effluent flow of the RAIB reactor presented a COD of 52 mg l−1, and concentrations of 2 mg , 1.24 mg and 3.46 mg .  相似文献   

4.

A combined chemical and biological process for the recycling of flue gas desulfurization (FGD) gypsum into calcium carbonate and elemental sulfur is demonstrated. In this process, a mixed culture of sulfate-reducing bacteria (SRB) utilizes inexpensive carbon sources, such as sewage digest or synthesis gas, to reduce FGD gypsum to hydrogen sulfide. The sulfide is then oxidized to elemental sulfur via reaction with ferric sulfate, and accumulating calcium ions are precipitated as calcium carbonate using carbon dioxide. Employing anaerobically digested municipal sewage sludge (AD-MSS) medium as a carbon source, SRBs in serum bottles demonstrated an FGD gypsum reduction rate of 8 mg/L/h (109 cells)-1. A chemostat with continuous addition of both AD-MSS media and gypsum exhibited sulfate reduction rates as high as 1.3 kg FGD gypsum/m3d. The increased biocatalyst density afforded by cell immobilization in a columnar reactor allowed a productivity of 152 mg SO4 -2/Lh or 6.6 kg FGD gypsum/m3d. Both reactors demonstrated 100% conversion of sulfate, with 75–100% recovery of elemental sulfur and chemical oxygen demand utilization as high as 70%. Calcium carbonate was recovered from the reactor effluent on precipitation using carbon dioxide. It was demonstrated that SRBs may also use synthesis gas (CO, H2, and CO2 in the reduction of gypsum, further decreasing process costs. The formation of two marketable products—elemental sulfur and calcium carbonate—from FGD gypsum sludge, combined with the use of a low-cost carbon source and further improvements in reactor design, promises to offer an attractive alternative to the landfilling of FGD gypsum.

  相似文献   

5.
Removal of sulfide and production of methane from carbon dioxide in microbial electrolysis cells (MECs) at the applied voltage of 0.7 V was achieved using sulfide and organic compound as electron donors. The removal rate of sulfide was 72 % and the Faraday efficiency of methane formation was 57 % within 70 h of operation. Microbial fuel cell (MFCs) can be connected in series to supply power and drive the reaction in MECs. Removal of sulfide and production of methane from carbon dioxide in MFCs–MEC coupled system was achieved. The sulfide removal rates were 62.5, 60.4, and 57.7 %, respectively, in the three anode compartments. Methane accumulated at a rate of 0.354 mL h?1 L?1 and the Faraday efficiency was 51 %. Microbial characterization revealed that the biocathode of MEC was dominated by relatives of Methanobacterium palustre, Methanobrevibacter arboriphilus, and Methanocorpusculum parvum. This technology has a potential for wastewater treatments and biofuel production from carbon dioxide.  相似文献   

6.
Biodiesel-processing factories employing the alkali-catalyzed transesterification process generate a large amount of wastewater containing high amount of methanol, glycerol, and oil. As such, wastewater has high potential to produce biogas using anaerobic treatment. The aim of this research was to investigate the performance of an anaerobic baffled reactor for organic removal and biogas production from biodiesel wastewater. The effect of different organic loading rates, varying from 0.5 kg m−3 d−1 to 3.0 kg m−3 d−1 of chemical oxygen demand, was determined using three 22 L reactors, each comprising five separate compartments. Wastewater was pretreated with chemical coagulants to partially remove oil prior to experimentation. Results show that the anaerobic baffled reactor operated at 1.5 kg m−3 d−1 of chemical oxygen demand and ten days of hydraulic retention time provided the best removal efficiencies of 99 % of chemical oxygen demand, 100 % of methanol, and 100 % of glycerol. Increasing the organic loading rate over 1.5 kg m−3 d−1 of chemical oxygen demand led to excessive accumulation of volatile fatty acids thereby making the pH drop to a value unfavorable for methanogenesis. The biogas production rate was 12 L d−1 and the methane composition accounted for 64–74 %. Phase-separated characteristics revealed that the highest chemical oxygen demand removal percentage was achieved in the first compartment and the removal efficiency gradually decreased longitudinally. A scanning electron microscopic study indicated that the most predominant group of microorganisms residing on the external surface of the granular sludge was Methanosarcina.  相似文献   

7.
This study investigated nitrate removal using biological denitrification by the iron-reducing bacteria strain CC76 combined with zero-valent iron (ZVI) in simulated groundwater under anaerobic conditions. The mechanism of nitrate reduction as well as the process of iron cycling by strain CC76 and ZVI were studied. During growth experiments, the strain CC76 showed the ability to utilize Fe2+ (electron donor) produced from the stimulated corrosion of ZVI for the nitrate removal. ZVI exerted inhibitive effects on the growth of strain CC76 in the early stage. However, the strain CC76 was able to tolerate the presence of ZVI in the long term. Moreover, three factors (temperature, initial pH, and ZVI concentration) were selected as effective factors and were optimized using a central composite design of response surface methodology. Based on the statistical analysis, a temperature of 30.44 °C, initial pH of 6.11, and ZVI concentration of 5.89 g/L were determined to be the optimum values. The effect of Fe2+/ZVI ratio was also explored and compared with ZVI alone, a certain amount of a mixture of Fe2+ and ZVI showed a higher nitrate removal ability. Moreover, scanning electron microscopy and X-ray diffraction analyses showed the corrosion of ZVI occurred after reaction in the autotrophic denitrification system.  相似文献   

8.
Large-scale amine-based CO2 capture will generate waste containing large amounts of ammonia, in addition to contaminants such as the actual amine as well as degradation products thereof. Monoethanolamine (MEA) has been a dominant amine applied so far in this context. This study reveals how biological N removal can be achieved even in systems heavily contaminated by MEA in post- as well as pre-denitrification treatment systems, elucidating the rate-limiting factors of nitrification as well as aerobic and denitrifying biodegradation of MEA. The hydrolysis of MEA to ammonia readily occurred both in post- and pre-denitrification treatment systems with a hydraulic retention time of 7 h. MEA removal was ≥99?±?1 % and total nitrogen removal 77?±?10 % in both treatment systems. This study clearly demonstrates the advantage of pre-denitrification over post-denitrification for achieving biological nitrogen removal from MEA-contaminated effluents. Besides the removal of MEA, the removal efficiency of total nitrogen as well as organic matter was high without additional carbon source supplied.  相似文献   

9.
Summary Effective analytical methods for the simultaneous determination of five pharmaceuticals from various therapeutic classes in a variety of aqueous samples have been developed and method performance data are presented. The method involves the simultaneous extraction of the selected pharmaceuticals from the aqueous phase by solid phase extraction using a hyper cross linked, polystyrene-divinylbenzene polymer based sorbent. Analytes were eluted with methanol, derivatised with N-methyl-N-trimethylsilyltrifloroacetamide and analysed by gas chromatography – electron ionisation mass spectrometry (GC-EI-MS). Recoveries of 50 to 98% were established for waters spiked with the studied compounds at the low ng L–1 level with the highest detection sensitivities being achieved in the selected ion monitoring (SIM) mode and the quantification limit of the procedure for sample sizes of 1000 ml was approximately 5 ng L–1 for all matrices except sewage which was only tested to 20 ng L–1. Analysis of domestic sewage from a large treatment works demonstrate the presence of all five compounds in both influents and effluents.  相似文献   

10.
An innovative pilot-scale phototrophic biofilm reactor was evaluated over a 5-month period to determine its capacity to remove nitrogen and phosphorus from Dutch municipal wastewater effluents. The areal biomass production rate ranged between 2.7 and 4.5 g dry weight/m2/day. The areal nitrogen and phosphorus removal rates averaged 0.13 g N/m2/day and 0.023 g P/m2/day, which are low compared to removal rates achieved in laboratory biofilm reactors. Nutrient removal increased during the day, decreased with decreasing light intensity and no removal occurred during the night. Additional carbon dioxide supply was not requisite as the wastewater was comprised of enough inorganic carbon to sustain microalgal growth. The study was not conclusive for the limiting factor that caused the low nutrient removal rate, possibly the process was limited by light and temperature, in combination with pH increases above pH 9 during the daytime. This pilot-scale study demonstrated that the proposed phototrophic biofilm reactor is not a viable post-treatment of municipal wastewater effluents under Dutch climate conditions. However, the reactor performance may be improved when controlling the pH and the temperatures in the morning. With these adaptations, a phototrophic biofilm reactor could be feasible at lower latitudes with higher irradiance levels.  相似文献   

11.
The conventional treatments of effluents containing heavy metals produce significant quantities of byproducts with recalcitrant characteristics, making necessary looking after alternative techniques in order to avoid the production of new contaminated residues. Sorption process of chromium and zinc in vertical columns loaded with sewage sludge and organic solid waste has been studied in this work. The data from the TG curves of the two sorbents presented significant differences when they were submitted to the metal uptake, being noticed the displacement of the thermal events towards lower temperatures for both types of sorbents studied. As it was expected, for both sorbents, an increase in the mass of samples has been observed at the completion of the thermal tests upon metal uptake. Therefore, these facts demonstrate that during the biosorption process a physico-chemical interaction took place between sorbents and metals, as it was evidenced by the more than 100 K increase in the decomposition temperatures as well as the variation of the ΔH values of the samples.  相似文献   

12.
This study was conducted to investigate the effects of gamma ray irradiation on the solubilization of waste sewage sludge. The recovery of an organic carbon source from sewage sludge by gamma ray irradiation was also studied. The gamma ray irradiation showed effective sludge solubilization efficiencies. Both soluble chemical oxygen demand (SCOD) and biochemical oxygen demand (BOD5) increased by gamma ray irradiation. The feasibility of the solubilized sludge carbon source for a biological nitrogen removal was also investigated. A modified continuous bioreactor (MLE process) for a denitrification was operated for 20 days by using synthetic wastewater. It can be concluded that the gamma ray irradiation was useful for the solubilization of sludge and the recovery of carbon source from the waste sewage sludge for biological nitrogen removal.  相似文献   

13.
In this study, chemometric techniques such as cluster analysis (CA), discriminant analysis (DA), principal component analysis (PCA) and partial least squares (PLS) were used to analyse the wastewater dataset to identify the factors which affect the composition of sewage of domestic origin, spatial and temporal variations, similarity/dissimilarity among the wastewater characteristics of cis- and trans-drains and discriminating variables. Samples collected from 24 wastewater drains in Lucknow city and from three sites on Gomti river in the month of January/February, May, August and November during the period of 5 years (1994-1999) were characterized for 32 parameters. The multivariate techniques successfully described the similarities/dissimilarities among the sewage drains on the basis of their wastewater characteristics and sources signifying the effect of routine domestic/commercial activities in respective drainage areas. Spatial and seasonal variations in wastewater composition were also determined successfully. CA generated six groups of drains on the basis of similar wastewater characteristic. PCA provided information on seasonal influence and compositional differences in sewage generated by domestic and industrial waste dominated drains and showed that drains influenced by mixed industrial effluents have high organic pollution load. DA rendered six variables (TDS, alkalinity, F, TKN, Cd and Cr) discriminating between cis- and trans-drains. PLS-DA showed dominance of Cd, Cr, NO3, PO4 and F in cis-drains wastewater. The results suggest that biological-process based STPs could treat wastewater both from the cis- as well as trans-drains, however, prior removal of toxic metals will be required from the cis-drains sewage. Further, seasonal variations in wastewater composition and pollution load could be the guiding factor for determining the STPs design parameters. The information generated would be useful in selection of process type and in designing of the proposed sewage treatment plants (STPs) for safe disposal of wastewater.  相似文献   

14.
The effects of exogenous CO2 on the growth and lipid accumulation of a local screened facultative heterotrophic microalgae strain Auxenochlorella protothecoides (UMN280) as well as nutrient removal from concentrated municipal wastewater stream (centrate) were examined in this study. A 12-day batch experiment was conducted with CO2 aeration at three levels, namely, 0%, 1%, and 5% (v/v) CO2 mixed with air, under light intensity of 60???mol/(m2 @@s). A two-stage growth pattern was observed. The first stage (first?Cfifth day) was dominated by heterotrophic growth in which organic carbon was the main carbon source. The second stage (6th?C12th day) was dominated by autotrophic growth in which exogenous CO2 had a positive effect on algal biomass accumulation. The addition of 5% CO2 was better than that of 1% CO2 on the biomass and lipid production. The uptakes of nutrients were similar between injection and no injection of CO2, except on phosphorus removal which was affected by the acidification of CO2.  相似文献   

15.
Radiation processing of wastewater evaluated by toxicity assays   总被引:3,自引:0,他引:3  
Biological assays have been applied to industrial effluents and sewage influents, from distinct sites, before and after being submitted to ionizing radiation treatment. The objective of this study was to evaluate the efficiency of radiation, mainly electron beam accelerator, for the acute toxicity removal. The selected sampling presented a very toxic level and the radiation process was efficient for toxicity removal for 87.7% of irradiated samples. The sewage influents required lower radiation doses to reduce toxicity when compared to raw industrial effluents.  相似文献   

16.
Biological removal of organic sulfur from petroleum feedstocks offers an attractive alternative to conventional thermochemical treatment, because of the mild operating conditions afforded by the biocatalyst. In order for biodesulfurization to realize commercial success, reactors must be designed that allow for sufficient liquid-liquid and gas-liquid mass transfer, while simultaneously reducing operating costs. Electro-spray bioreactors were investigated for use as desulfurization reactors because of their reported operational cost savings relative to mechanically agitated reactors. Unlike batch-stirred reactors, which mix the biocatalystcontaining aqueous phase with the organic feedstock by imparting momentum to the entire bulk solution, electro-spray reactors have the potential for tremendous cost savings, creating an emulsion <5 (μm in diameter, at a cost of only 3 W/L. Power law relationships indicate that mechanically stirred reactors would require 100-1000-fold more energy to create such a fine emulsion, but these relationships generally do not account for the effect of endogenously produced surfactant in the system. Here, the rates dibenzothiophene (DBT) oxidation to 2-hydroxybiphenyl (2-HBP) in hexadecane, byRhodococcus sp IGTS8 are compared in the two reactor systems. Desulfurization rates ranged from 1.0 to 5.0 mg 2-HBP/(dry g cells · h), independent of the reactor employed. The batch-stirred reactor was capable of forming a very fine emulsion in the presence of the biocatalyst IGTS8, similar to that formed in the emulsion phase contactor (EPTM), presumably because the biocatalyst produces its own surfactant. Although EPC did not prove to be advantageous for the IGTS8 desulfurization system, it may prove advantageous for systems that do not produce surface-active bioagents, in addition to being mass-transport limited.  相似文献   

17.
In this study, reduction of estrogenic activity in three different types of effluents from sewage, industrial and livestock wastewater treatment plants by gamma-irradiation was investigated using the yeast two-hybrid assay. After gamma-ray treatment at a dose of 10 kGy, estrogenic activities of sewage, industrial and livestock effluents decreased from 4.4 to 3.0, 1.5 to 1.0 and 16 to 9.9 ng-EEQ L?1, respectively. The substantial reduction of estrogenic activity in livestock effluent was attributable to the degradation of 17β-estradiol (E2), estrone (E1) and 17α-ethynylestradiol (EE2). Although bisphenol A (BPA) was found at the highest concentration in all effluents, its contribution to the estrogenic activity was not significant due to its low relative estrogenic potency. Meanwhile, the calculated estrogenic activity based on concentrations of E2, E1, EE2 and BPA in the effluents significantly differed from the measured ones. Overestimation may have resulted by dissolved organic matters in effluents inhibiting the estrogenic activity of E2, E1, EE2 and BPA, whereas underestimation was likely due to estrogenic by-products generated by gamma-irradiation.  相似文献   

18.
Ruthenium(III)-polypyridyl complexes, generated from the photochemical oxidation of Ru(II) complexes with molecular oxygen, undergo facile electron transfer reaction with dialkyl and aryl methyl sulfides. The rate controlling electron transfer process is confirmed from the absorption spectrum of the transient sulfide radical cation. The spectrophotometric kinetic study shows that the reaction is of total second order, first order in Ru(III) complex and in the organic sulfide. The reaction rate is susceptible to the change of ligand in [Ru(NN)3]3+ and the structure of organic sulfide.  相似文献   

19.
《Analytical letters》2012,45(11-12):2613-2626
Abstract

A solid supported liquid membrane for the selective removal of Au(III) from chloride solutions has been developed by using Triisobutiphosphine sulfide (Cyanex 471x) In cumene as organic carrier. The membrane system is shown to be effective between chloride solutions ([Cl?]= 1.0 M) containing traces of Au(III) and SCN? 0.1 M solutions. Different kinds of at membrane supports have been studied. The results, expressed in terms of membrane permeability, show significant differences between the different supports employed, the polypropylene supports, being the most efficient.  相似文献   

20.
NaY分子筛的改性及吸附脱氮性能   总被引:1,自引:0,他引:1  
洪新  唐克 《燃料化学学报》2015,43(2):214-220
采用离子交换法用NH+4、Zn2+、Cu2+、Cr3+阳离子改性NaY分子筛,并利用XRD、FT-IR和低温N2吸附-脱附等方法对改性的分子筛进行了表征。XRD 和FT-IR表征结果表明,改性后的分子筛骨架完好。Cr改性Y分子筛(CrY)的比表面积、孔体积及平均孔径均较小,但存在部分介孔。研究了改性分子筛对含喹啉模拟燃料的吸附脱氮,喹啉分子尺寸的模拟结果为0.711 6 nm×0.500 2 nm,说明其并不易进入Y型分子筛0.74 nm的微孔。吸附脱氮结果表明,CrY的脱氮效果最好,CuY和ZnY次之,NH4Y效果最差,改性分子筛的吸附脱氮性能与金属离子的价态有关,同价金属离子改性后的分子筛,吸附时间对其影响趋势相同,且金属离子价态越高,改性分子筛的吸附脱氮性能越好。吸附温度对CrY和NH4Y分子筛吸附脱除喹啉的影响不大,可在室温下使用,但高温有利于CuY和ZnY吸附脱氮。XRD表征结果表明,焙烧后CrY分子筛骨架已完全塌陷失去了绝大部分吸附脱氮性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号