首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The utility of multi-walled carbon nanotubes (MWNTs) to decrease the interaction between cytochrome P450 enzymes and the capillary wall during in-capillary enzymatic incubation was investigated. First, 18 surfactants were screened to determine their MWNT-dispersing capacity. A probe sonication procedure was developed in order to attain homogeneous MWNT dispersions within a reasonable time. Next, the influence of surfactants and MWNTs on P450 activity was studied, employing verapamil and CYP3A4 as model substrate and P450 isoform, respectively. MWNTs dispersed in Brij 35 did not affect CYP3A4 activity significantly and were selected for subsequent in-capillary tests. An in-line CE assay, involving electrophoretic mixing of reagents and zero potential amplification in the thermostatted part of the capillary, was developed. In-capillary incubations without MWNTs caused adsorption of enzyme to the capillary wall and a concomitant decline of capillary lifetime, even when extensive between-run rinsing was applied. Addition of MWNTs to the enzyme solution entailed substantial improvement of migration time and peak shape repeatability. The performance of three types of MWNTs was compared.  相似文献   

2.
Prost F  Thormann W 《Electrophoresis》2003,24(15):2577-2587
Capillary electrophoresis (CE) with multiwavelength absorbance detection is demonstrated to be an effective tool for the assessment of in vitro drug metabolism studies using microsomes containing single human cytochrome P450 enzymes (CYPs) expressed in baculovirus-infected insect cells (Supersomes). Mephenytoin (MEPH), dextromethorphan, diclofenac, caffeine, and methadone (MET) were successfully applied as test substrates for CYP2C19, CYP2D6*1, CYP2C9*1, CYP1A2, and CYP3A4, respectively. For each system, the CE-based assay could be shown to permit the simultaneous analysis of the parent drug and its targeted metabolite. Using a chiral micellar electrokinetic capillary chromatography assay, the aromatic hydroxylation of MEPH catalyzed by CYP2C19 could thereby be confirmed to be highly stereoselective, an aspect that is in agreement with data obtained via urinary analysis after intake of racemic MEPH by extensive metabolizer phenotypes. The MET to 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) conversion was investigated with a chiral zone electrophoresis assay. Incubation of racemic and nonracemic MET with CYP3A4 revealed no stereoselectivity for the transformation to EDDP, whereas no EDDP formation was observed with CYP1A2. CYP2C9 and CYP2C19 provided enhanced formation of R-EDDP and CYP2D6 incubation resulted in the preferential conversion to S-EDDP. Investigations using racemic MET and human liver microsomes revealed a modest stereoselectivity with an R/S EDDP ratio < 1 which is similar to the in vivo findings in urine.  相似文献   

3.
Cytochrome P450 (CYP), which is one of the most important enzymes in human liver, is responsible for a large portion of the first-pass metabolism of drugs. Many studies have focused on the determination of CYP activity by substrate assays. Most of them used liquid chromatography (LC) as analytical technique, while only a few studies used capillary electrophoresis (CE) for the separation and quantitation of reaction components. In this study, the feasibility of using CE in an in vitro metabolism study with CYP was tested. Verapamil was chosen as the substrate for CYP 3A4 isozyme (Supersome). A chiral capillary electrophoretic method was developed and validated for the simultaneous determination of R,S-verapamil (VER) and their major metabolites, R,S-norverapamil (NOR). A method for CYP 3A4 activity assay was proposed with VER as a probe. At the same time, the enantioselective metabolism of VER was studied. Michaelis-Menten constants of R- and S-VER were determined. S-VER was metabolised faster and more extensively than R-VER, with K(m)=167+/-23 microM, V(max)=3,418+/-234 pmol/min/mg for S-VER, and K(m)=168+/-35 microM, V(max)=2,502+/-275 pmol/min/mg for R-VER.  相似文献   

4.
In this study, a novel capillary electrophoresis (CE)-based enzymatic assay was developed to evaluate enzymatic activity in whole cells. β-Galactosidase expression was used as an example, as it is a biomarker for assessing replicative senescence in mammalian cells. It catalyzes the hydrolysis of para-nitrophenyl-β-d-galactopyranoside (PNPG) into para-nitrophenol (PNP). The CE-based assay consisted of four main steps: (1) hydrodynamic injection of whole intact cells into the capillary, (2) in-capillary lysis of these cells by using pulses of electric field (electroporation), (3) in-capillary hydrolysis of PNPG by the β-galactosidase—released from the lysed cells—by the electrophoretically mediated microanalysis (EMMA) approach, and (4) on-line detection and quantification of the PNP formed. The developed method was applied to Escherichia coli as well as to human keratinocyte cells at different replicative stages. Results obtained by CE were in excellent agreement with those obtained from off-line cell lysates which proves the efficiency of the in-capillary approach developed. This work shows for the first time that cell membranes can be disrupted in-capillary by electroporation and that the released enzyme can be subsequently quantified in the same capillary. Enzyme quantification in cells after their in-capillary lysis has never been conducted by CE. The developed CE approach is automated, economic, eco-friendly, and simple to conduct. It has attractive applications in bacteria or human cells for early disease diagnostics or insights for development in biology.
Figure
Electropherograms for in-capillary reaction catalyzed by β-galactosidase obtained from off-capillary and in-capillary lysis of E. coli cells.  相似文献   

5.
Pinostrobin (PI, 5‐hydroxy‐7‐methoxyflavanone) is a natural flavonoid known for its rich pharmacological activities. The objective of this study was to identify the human liver cytochrome P450 (CYP450) isoenzymes involved in the metabolism of PI. A single hydoxylated metabolite was obtained from PI after an incubation with pooled human liver microsomes (HLMs). The relative contributions of different CYP450s were evaluated using CYP450‐selective inhibitors in HLMs and recombinant human CYP450 enzymes, and the results revealed the major involvement of CYP1A2, CYP2C9 and CYP2E1 in PI metabolism. We also evaluated the ability of PI to inhibit and induce human cytochrome P450 enzymes in vitro . High‐performance liquid chromatography and liquid chromatography–tandem mass spectrometry analytical techniques were used to estimate the enzymatic activities of seven drug‐metabolizing CYP450 isozymes in vitro . In HLMs, PI did not inhibit CYP 1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 or CYP3A4 (IC50 > 100 μm ). In the induction studies, PI had minimal effects on CYP1A2, CYP2B6and CYP3A4 activity. Based on these results, PI would not be expected to cause clinically significant CYP450 inhibition or induction.  相似文献   

6.
Drug‐drug interaction evaluations of new pharmaceutical candidates are critical to preventing drug withdrawal and are routinely determined through the use of cytochrome P450 assays. The measurement of the effect of test compounds on the metabolism of known substrates allows for the determination of specific CYP450 isoenzyme inhibition and calculation of IC50 values. A sensitive, high‐throughput ultra‐performance liquid chromatography/tandem mass spectrometric (UPLC/MS/MS) method is presented for the evaluation of CYP450 inhibition. The assay was performed using a cocktail of probe substrates and the results were compared to those obtained with the more time‐consuming methodology utilizing individual substrates. The use of a high‐resolution, sub‐2 µm particle, LC system allowed for a high‐throughput assay of just 1 min. The extra resolution of the UPLC/MS/MS system allowed for the complete resolution of the analytes, with a fast switching MS for comprehensive data collection. The CYP450 inhibition results obtained using the substrate cocktail approach were found to be essentially identical to those obtained using individual substrates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This study presents the in-capillary enzymatic biotransformation of dextromethorphan, an antitusive drug and opioid receptor antagonist, and subsequent electrophoretic separation of its products. The study includes the optimization of separation parameters to fulfill the requirements of an online microreaction. The analyses were performed in a bare fused-silica capillary using 100 mM sodium tetraborate (pH 10.0) mixed with linear polyacrylamide (20%, v/v) and 2-propanol (10%, v/v). This BGE was suitable for monitoring both off-line and in-capillary incubations. The partial filling technique enabled the enzymatic reaction to be carried out in its optimal environment (20 mM sodium phosphate, pH 7.4). Finally, in-capillary microreaction in the presence of cytochrome P450 3A4 gave satisfactory outcomes.  相似文献   

8.
The early detection of potential drug-drug interactions is an important issue of drug discovery that has led to the development of high-throughput screening (HTS) methods for potential drug interactions. We developed a HTS method for potential interactions of inhibitory drugs for nine human P450 enzymes using cocktail incubation and tandem mass spectrometry in vitro. This new method involves incubation of two cocktail doses and single cassette analysis. The two cocktail doses in vitro were developed to minimize solvent effects and mutual drug interactions among substrates: cocktail A was composed of phenacetin for CYP1A2, coumarin for CYP2A6, paclitaxel for CYP2C8, S-mephenytoin for CYP2C19, dextromethorphan for CYP2D6, and midazolam for CYP3A4; and cocktail B was composed of three substrates including bupropion for CYP2B6, tolbutamide for CYP2C9, and chlorzoxazone for CYP2E1. In the incubation study of these cocktails, the reaction mixtures were pooled and simultaneously analyzed using liquid chromatography/tandem mass spectrometry employing a fast gradient. The method was validated by comparing the inhibition data obtained from the incubation of each individual probe substrate alone with data from the new method. The IC50 value of each inhibitor in the cocktail agreed well with that of the individual probe drug as well as with values previously reported in the literature. As a HTS method for potential interactions of the inhibition of these nine P450 enzymes, this new method will be useful in the drug discovery process and for the mechanistic understanding of drug interactions.  相似文献   

9.
基于毛细管液滴技术,建立了提取血液中乙型肝炎病毒(HBV)DNA的方法.方法的基本原理是向聚四氟乙烯毛细管中连续引人油相和水相溶液时,由于表面张力作用,可以形成稳定的油包水型液滴.依次引人含有不同试样的液滴,在毛细管中完成进样、DNA结合、洗涤以及洗脱等过程.实验表明,采用蛋白酶K裂解和提高洗脱温度有利于提高DNA回收...  相似文献   

10.
The use of capillary electrophoresis (CE) for the determination of cytochrome P450 3A4 (CYP3A4) activity with R-warfarin as a substrate was investigated. CYP3A4 activity was determined by the quantitation of the product, 10-hydroxywarfarin, based on separation by CE. The separation conditions were as follows: capillary, 80.5 cm (75 microm i.d., 60 cm effective length); 50 mM sodium phosphate buffer (pH 6.5); 23 kV (90 microA) applied voltage; fluorescence detection, excitation wavelength, 310 nm, emission wavelength, 418 nm; capillary temperature, 37 degrees C. With the developed CYP3A4 activity assay and the Lineweaver-Burk equation, the Michaelis-Menten parameters Km and Vmax for formation of 10-hydroxywarfarin from R-warfarin in the presence of CYP3A4 were calculated to be 166 +/- 12 microM and 713 +/- 14 pmol/min/nmol (or 91.4 pmol/min/mg) CYP3A4, respectively.  相似文献   

11.
The efficiency of drug metabolism by a single enzyme can be measured as the fractional metabolic clearance which can be used as a measure of whole body activity for that enzyme. Measurement of activity of multiple enzymes simultaneously is feasible using a cocktail approach, however, analytical approach using different assays for drug probes can be cumbersome. A quantitative ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) based method for the rapid measurement of six cytochrome P450 (CYP) probe drugs and their relevant metabolites is described. The six specific probe substrates/metabolites are caffeine/paraxanthine (CYP1A2), flurbiprofen/4'-hydroxyflurbiprofen (CYP2C9), mephenytoin/4'-hydroxymephenytoin (CYP2C19), debrisoquine/4-hydroxydebrisoquine (CYP2D6), chlorzoxazone/6'-hydroxychlorzoxazone (CYP2E1) and dapsone/N-monoacetyldapsone (NAT2). These probes were quantified by stable isotope dilution from plasma and urine. The present workflow provides a robust, fast and sensitive assay for the "Pittsburgh cocktail", and has been successfully applied to a clinical phenotyping study of liver disease. A representative group of 17 controls and patients with chronic liver disease were administered orally caffeine (100 mg), chlorzoxazone (250 mg), debrisoquine (10 mg), mephenytoin (100 mg), flurbiprofen (50 mg) and dapsone (100 mg). Urine (0 through 8 h) and plasma (4 and 8 h) samples were analyzed for drug/metabolite amounts by stable isotope dilution UPLC-MS/MS. The phenotypic activity of drug metabolizing enzymes was investigated with 17 patient samples. Selected reaction monitoring (SRM) was optimized for each drug and metabolite. In the method developed, analytes were resolved by reversed-phase by development of a gradient using a water/methanol solvent system. SRM of each analyte was performed in duplicate on a triple quadrupole mass spectrometer utilizing an 8 min analytical method each, one with the source operating in the positive mode and one in the negative mode, using the same solvent system. This method enabled quantification of each drug (caffeine, chlorzoxazone, debrisoquine, mephenytoin, flurbiprofen, and dapsone) and its resulting primary metabolite in urine or plasma in patient samples. The method developed and the data herein demonstrate a robust quantitative assay to examine changes in CYP enzymes both independently or as part of a cocktail. The clinical use of a combination of probe drugs with UPLC-MS/MS is a highly efficient tool for the assessment of CYP enzyme activity in liver disease.  相似文献   

12.
Afshar M  Thormann W 《Electrophoresis》2006,27(8):1526-1536
An enantioselective CE method was used to identify the ability of CYP450 enzymes and their stereoselectivity in catalyzing the transformation of propafenone (PPF) to 5-hydroxy-propafenone (5OH-PPF) and N-despropyl-propafenone (NOR-PPF). Using in vitro incubations with single CYP450 enzymes (SUPERSOMES), 5OH-PPF is shown to be selectively produced by CYP2D6 and N-dealkylation is demonstrated to be mediated by CYP2D6, CYP3A4, CYP1A2, and CYP1A1. For the elucidation of kinetic aspects of the metabolism with CYP2D6 and CYP3A4, incubations with individual PPF enantiomers and racemic PPF were investigated. With the exception of the dealkylation in presence of R-PPF only, which can be described by the Michaelis-Menten model, all CYP2D6-induced reactions were found to follow autoactivation kinetics. For CYP3A4, all NOR-PPF enantiomer formation rates as function of PPF enantiomer concentration were determined to follow substrate inhibition kinetics. The formation of NOR-PPF by the different enzymes is stereoselective and is reduced significantly when racemic PPF is incubated. Clearance values obtained for CYP3A4 dealkylation are stereoselective whereas those of CYP2D6 hydroxylation are not. This paper reports the first investigation of the PPF hydroxylation and dealkylation kinetics by the CYP2D6 enzyme and represents the first report in which enantioselective CE data provide the complete in vitro kinetics of metabolic steps of a drug.  相似文献   

13.
Human kinases are one of the most promising targets for cancer therapy. Methods able to measure the effects of drugs on these cell agents remain crucial for biologists and medicinal chemists. The current work therefore sought to develop an in-capillary enzymatic assay based on capillary electrophoresis (CE) to evaluate the inhibition of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt), and the mammalian target of rapamycin (mTOR). These kinases belong to the same signaling pathway PI3K/Akt/mTOR. For this proposal, the capillary was used as a nanoreactor in which a few nanoliters of the kinase, its substrate, adenosine triphosphate (ATP), and the potent inhibitor were separately injected. A transverse diffusion of laminar flow profiles (TDLFP) approach was employed to mix the reactants. Adenosine diphosphate (ADP ) was detected online at 254 nm. The CE assay was first developed on the α isoform of PI3K. It was compared to five commercial kits frequently used to assess kinase inhibition, based on time-resolved fluorescence resonance energy transfer (TR-FRET) and bioluminescence. Each assay was evaluated in terms of sensitivity (S/B), reproducibility (Z′), and variability (r 2). This CE method was easily extended to assay the inhibition of the β, γ, and δ isoforms of PI3K, and of the other kinases of the pathway, Akt1 and mTOR, since it is based on in-capillary mixing by TDLFP and on ADP quantification by simple UV absorption. This work shows for the first time the evaluation of inhibitors of the kinases of the PI3K/Akt/mTOR pathway using a common in-capillary CE assay. Several inhibitors with a wide range of affinity toward these enzymes were tested.  相似文献   

14.
药物代谢过程是药物在体内产生药效和毒性的主要过程,发展廉价、方便、快速、高通量的体外药物代谢研究方法对新药的开发和设计、给药的方法和剂量、临床药物的检测等都有重要的指导意义. 细胞色素P450酶(CYP450酶)在药物的I相反应中起到关键作用,以电极代替辅酶NADPH提供CYP450酶催化反应过程中需要的两个电子,构建CYP450酶电化学生物传感器可实现药物的初步筛选. 大量研究表明,CYP450酶在电极表面合适的固定方法与电极材料可有效提高传感器的检测性能. 本文主要综述近年来CYP450酶电化学生物传感器的构建及其在药物代谢研究方面的应用,并展望其研发前景.  相似文献   

15.
A generic method employing ultrafast liquid chromatography with tandem mass spectrometry (LC/MS/MS) was developed and employed for routine screening of drug candidates for inhibition of five major human cytochrome p450 (CYP) isozymes, CYP3A4, CYP2D6, CYP2C9, CYP2C19, and CYP1A2. The method utilized a monolithic silica rod column to allow fast flow rates to significantly reduce chromatographic run time. The major metabolites of six CYP-specific probe substrates for the five p450 isoforms were monitored and quantified to determine IC(50) values of five drug compounds against each p450 isozyme. Human liver microsomal incubation samples at each test compound concentration were combined and analyzed simultaneously by the LC/MS/MS method. Each pooled sample containing six substrates and an internal standard was separated and detected in only 24 seconds. The combination of ultrafast chromatography and sample pooling techniques has significantly increased sample throughput and shortened assay turnaround time, allowing a large number of compounds to be screened rapidly for potential p450 inhibitory activity, to aid in compound selection and optimization in drug discovery.  相似文献   

16.
以奥美拉唑、 苯妥英、 卡马西平和非那西丁为检测肝药酶细胞色素P450酶(CYP450)亚型的专属探针药物, 通过原型药物减少量测定法考察药物体外代谢的变化, 评价人参皂苷Rb1对CYP450不同亚型酶的作用. 结果表明, P2C9, P2C19和P3A4实验组与对照组差异不显著, P1A2实验组与对照组差异显著, 表明人参皂苷Rb1能诱导P1A2亚型酶的活性, 促进底物与酶反应, 加快底物的代谢, 而对P2C9, P2C19和P3A4三个亚型酶有弱的诱导或无诱导作用. 根据快速分离液相色谱-质谱联用(RRLC-MS/MS)检测结果推断, 人参皂苷Rb1在CYP450酶中的代谢产物可转化为人参皂苷Rb1氧化产物(Rb1+O)及人参皂苷Rd和F2.  相似文献   

17.
Structural interactions that enable electron transfer to cytochrome‐P450 (CYP450) from its redox partner CYP450‐reductase (CPR) are a vital prerequisite for its catalytic mechanism. The first structural model for the membrane‐bound functional complex to reveal interactions between the full‐length CYP450 and a minimal domain of CPR is now reported. The results suggest that anchorage of the proteins in a lipid bilayer is a minimal requirement for CYP450 catalytic function. Akin to cytochrome‐b5 (cyt‐b5), Arg 125 on the C‐helix of CYP450s is found to be important for effective electron transfer, thus supporting the competitive behavior of redox partners for CYP450s. A general approach is presented to study protein–protein interactions combining the use of nanodiscs with NMR spectroscopy and SAXS. Linking structural details to the mechanism will help unravel the xenobiotic metabolism of diverse microsomal CYP450s in their native environment and facilitate the design of new drug entities.  相似文献   

18.
The use of CE for rapid assessment of metabolic stability of drugs with cytochrome P450 (CYP) enzymes, based on relative rates of reduced nicotinamide adenine dinucleotide phosphate (NADPH) consumption and nicotinamide adenine dinucleotide phosphate (NADP) production, was investigated. The separation conditions were as follows: capillary, 80.5 cm (75 microm id, 72 cm effective length for UV detection, 58 cm effective length for fluorescence detection); 25 mM sodium phosphate buffer (pH 8.8); 28 kV (80 microA) applied voltage; UV, 260 nm; fluorescence detection, excitation wavelength, 310 nm, emission wavelength, 418 nm; capillary temperature, 25 degrees C. For UV detection, the incubation conditions were as follows: CYP3A4: 20 pmol/mL; NADPH: 1 mM; EDTA: 1 mM; concentration of the substrate: 5-10 times its reported literature K(m) value; temperature: 37 degrees C; incubation time: 15 min. For fluorescence detection, the concentrations were reduced to CYP3A4: 4 pmol/mL, NADPH: 20 microM, EDTA: 20 microM and substrate: 10 microM. Blank incubations were performed in the absence of substrate. Compared with the blank, significant differences were found for the consumption of NADPH and the production of NADP. The development of this assay system allows rapid assessment of metabolic stability relative to standard compounds, as well as potential identification of the major CYP involved in the metabolism. It would reduce the backlog of compounds that require LC/MS analysis, and thereby expedite the process of metabolic stability screening.  相似文献   

19.
Genetic polymorphisms can significantly affect the enzyme activity of the drug metabolizing enzyme Cytochrome P450 2D6 (CYP2D6; OMIM 124030). Accordingly, CYP2D6 genotyping is considered as a valid approach to predict the individual CYP2D6 metabolizing status. We introduce ion-pair reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry (ICEMS) as method for the characterization of single base variants, small deletions, and insertions in the CYP2D6 gene. A two-step polymerase chain reaction (PCR) was developed for the simultaneous amplification of nine polymorphic regions within the CYP2D6 gene. Cleanup, separation, and denaturation of PCR amplicons were achieved by high-performance liquid chromatography. High-performance molecular mass measurements provided nucleotide composition profiles that principally enable the resolution of 37 reported CYP2D6 alleles. The developed assay was applied to the genotyping of 93 unrelated Austrian individuals. For validation, a selected number of samples and polymorphic sites were retyped by alternative genotyping technologies. The PCR-ICEMS assay turned out to be an accurate, robust, and cost-effective CYP2D6 genotyping strategy.  相似文献   

20.
Knowledge about the cytochrome P450 (CYP) inhibition potential of new drug candidates is important for drug development because of its risk of interactions. For novel psychoactive substances (NPS), corresponding data are not available. For developing a general drug inhibition cocktail assay, a liquid-chromatography high-resolution tandem mass spectrometry multi-analyte approach was developed and validated for quantifying low concentrations of O-diethyl phenacetin for CYP 1A2, 7-hydroxy coumarin for CYP 2A6, 4-hydroxy bupropion for CYP 2B6, N-diethyl amodiaquine for CYP 2C8, 4-hydroxy diclofenac for CYP 2C9, 5-hydroxy omeprazole for CYP 2C19, O-dimethyl dextromethorphan for CYP 2D6, 6-hydroxy chlorzoxazone for CYP 2E1, and 6-beta-hydroxy testosterone for CYP 3A in the incubation mixture in the presence of substrates and inhibitors. The tested matrix effects ranged from 63 to 141 % and the recoveries from 95 to 110 %. Time-saving one-point calibration allowed sufficient quantification, although some of the validation results for 7-hydroxy coumarin, 4-hydroxy bupropion, 4-hydroxy diclofenac, and 6-beta-hydroxy testosterone were outside the acceptance criteria (AC) but without influence of the IC50 calculation. Validation showed also that the approach was sensitive and selective using mass spectral multiplexing. In conclusion, the presented assay was suitable for the quantification of the model substrate metabolites and could be used for the development of a CYP inhibition assay for testing most CYPs and a wide range of drugs of abuse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号