首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《随机分析与应用》2013,31(3):589-625
Abstract

We consider a periodic-review stochastic inventory problem in which demands for a single product in each of a finite number of periods are independent and identically distributed random variables. We analyze the case where shortages (stockouts) are penalized via fixed and proportional costs simultaneously. For this problem, due to the finiteness of the planning horizon and non-linearity of the shortage costs, computing the optimal inventory policy requires a substantial effort as noted in the previous literature. Hence, our paper is aimed at reducing this computational burden. As a resolution, we propose to compute “the best stationary policy.” To this end, we restrict our attention to the class of stationary base-stock policies, and show that the multi-period, stochastic, dynamic problem at hand can be reduced to a deterministic, static equivalent. Using this important result, we introduce a model for computing an optimal stationary base-stock policy for the finite horizon problem under consideration. Fundamental analytic conclusions, some numerical examples, and related research findings are also discussed.  相似文献   

2.
We study an inventory system in which products are ordered from outside to meet demands, and the cumulative demand is governed by a Brownian motion. Excessive demand is backlogged. We suppose that the shortage and holding costs associated with the inventory are given by a general convex function. The product ordering from outside incurs a linear ordering cost and a setup fee. There is a constant leadtime when placing an order. The optimal policy is established so as to minimize the discounted cost including the inventory cost and ordering cost.  相似文献   

3.
We study a single-item periodic-review model for the joint pricing and inventory replenishment problem with returns and expediting. Demand in consecutive periods are independent random variables and their distributions are price sensitive. At the end of each period, after the demand is realized, a buyer can return excess stocks to a supplier. Or, if there are stockouts, the buyer can place an expediting order at the supplier to reduce the amount of shortage. Unfilled demands are fully backlogged. We characterize the optimal dynamic policy that determines the pricing, inventory replenishment, and adjustment decisions in each period so that the total expected discounted profit is maximized. For a very general stochastic demand function, we can show that the optimal replenishment policy is a modified base-stock policy, the optimal pricing policy is a modified base-stock-list-price policy, and the optimal policy for inventory adjustment follows a dual-threshold policy. We further study the operational effect of returns and expediting. Analytical and numerical results demonstrate that returns and expediting lead to a significant profit increase in a number of situations, including limited supply capacity, sufficient flexibility of the expediting order, high demand uncertainty, and a price-sensitive market.  相似文献   

4.
This paper deals with the service parts end-of-life inventory problem in a circumstance that demands for service parts are differentiated. Customer differentiation might be due to criticality of the demand or based on various service contracts. In both cases, we model the problem as a finite horizon stochastic dynamic program and characterize the structure of the optimal inventory policy. We show that when customers are differentiated based on the demand criticality then the optimal structure consists of time and state dependent threshold levels for inventory rationing. In case of differentiation based on service contracts, we show that in addition to rationing thresholds we also need contract extension thresholds by which the system decides whether to offer an extension to an expiring contract or not. By numerical experiments in both cases, we identify the value of incorporating such decisions in service parts end-of-life inventory management with customer differentiation. Moreover, we show that these decisions not only result in cost efficiency but also decrease the risk of part obsolescence drastically.  相似文献   

5.
We consider a single-period multi-location inventory system where inventory choices at each location are centrally coordinated. Transshipments are allowed as recourse actions in order to reduce the cost of shortage or surplus inventory after demands are realized. This problem has not been solved to optimality before for more than two locations with general cost parameters. In this paper we present a simple and intuitive model that enables us to characterize optimal inventory and transshipment policies for three and four locations as well. The insight gained from these analytical results leads us to examine the optimality conditions of a greedy transshipment policy. We show that this policy will be optimal for two and three locations. For the n location model we characterize the necessary and sufficient conditions on the cost structure for which the greedy transshipment policy will be optimal.   相似文献   

6.
We consider an inventory model for spare parts with two stockpoints, providing repairable parts for a critical component of advanced technical systems. As downtime costs for these systems are expensive, ready–for–use spare parts are kept in stock to be able to quickly respond to a breakdown of a system. We allow for lateral transshipments of parts between the stockpoints upon a demand arrival. Each stockpoint faces demands from multiple demand classes. We are interested in the optimal lateral transshipment policy. There are three ways in which a demand can by satisfied: from own stock, via a lateral transshipment, or via an emergency procedure. Using stochastic dynamic programming, we characterize and prove the structure of the optimal policy, that is, the policy for satisfying the demands which minimizes the average operating costs of the system. This optimal policy is a threshold type policy, with state-dependent thresholds at each stockpoint for every demand class. We show a partial ordering in these thresholds in the demand classes. In addition, we derive conditions under which the so-called hold back and complete pooling policies are optimal, two policies that are often assumed in the literature. Furthermore, we study several model extensions which fit in the same modeling framework.  相似文献   

7.
Spare parts demands are usually generated by the need of maintenance either preventively or at failures. These demands are difficult to predict based on historical data of past spare parts usages, and therefore, the optimal inventory control policy may be also difficult to obtain. However, it is well known that maintenance costs are related to the availability of spare parts and the penalty cost of unavailable spare parts consists of usually the cost of, for example, extended downtime for waiting the spare parts and the emergency expedition cost for acquiring the spare parts. On the other hand, proper planned maintenance intervention can reduce the number of failures and associated costs but its performance also depends on the availability of spare parts. This paper presents the joint optimisation for both the inventory control of the spare parts and the Preventive Maintenance (PM) inspection interval. The decision variables are the order interval, PM interval and order quantity. Because of the random nature of plant failures, stochastic cost models for spare parts inventory and maintenance are derived and an enumeration algorithm with stochastic dynamic programming is employed for finding the joint optimal solutions over a finite time horizon. The delay-time concept developed for inspection modelling is used to construct the probabilities of the number of failures and the number of the defective items identified at a PM epoch, which has not been used in this type of problems before. The inventory model follows a periodic review policy but with the demand governed by the need for spare parts due to maintenance. We demonstrate the developed model using a numerical example.  相似文献   

8.
In this paper, optimal inventory lot-sizing models are developed for deteriorating items with general continuous time-varying demand over a finite planning horizon and under three replenishment policies. The deterioration rate is assumed to be a constant fraction of the on-hand inventory. Shortages are permitted and are completely backordered. The proposed solution procedures are shown to generate global minimum replenishment schedules for both general increasing and decreasing demand patterns. An extensive empirical comparison using randomly generated linear and exponential demands revealed that the replenishment policy which starts with shortages in every cycle is the least cost policy and the replenishment policy which prohibits shortages in the last cycle exhibited the best service level effectiveness. An optimal procedure for the same problem with trended inventory subject to a single constraint on the minimum service level (maximum fraction of time the inventory system is out of stock during the planning horizon) is also proposed in this paper.  相似文献   

9.
This paper considers the case of partially observed demand in the context of a multi-period inventory problem with lost sales. Demand in a period is observed if it is less than the inventory level in that period and the leftover inventory is carried over to the next period. Otherwise, only the event that it is larger than or equal to the inventory level is observed. These observations are used to update the demand distributions over time. The state of the resulting dynamic program consists of the current inventory level and the current demand distribution, which is infinite dimensional. The state evolution equation for the demand distribution becomes linear with the use of unnormalized probabilities. We study two demand cases. First, the demands evolve according to a Markov chain. Second, the demand distribution has an unknown parameter which is updated in the Bayesian manner. In both cases, we prove the existence of an optimal feedback ordering policy. Permanent address of J. Adolfo Minjárez-Sosa: Departamento de Matemáticas, Universidad de Sonora, Hermosillo, Sonora, México. This project was partially supported by NSF Grant 0509278, ARPATP Grant 009741-0019-2006, and CONACYT (Mexico) Grant 46633-F.  相似文献   

10.
以零售商的角度,讨论了在允许进货的情况下可替代产品的库存问题,建立了这类问题利润最大化的库存模型,讨论了各参数对利润和库存的影响.然后证明了问题的解是存在的,利润函数是子模的,并给出了最优解的一阶必要性条件,同时探讨了目标函数的凹性问题.通过理论分析和数值试验证明了在一定条件下替代和重新进货都能提高利润,并能降低总的库存水平.  相似文献   

11.
The paper is concerned with the problem of optimal production planning in deterministic pull flow lines with multiple products. The objective is to specify the production policy that minimizes the total inventory and backlog costs overtime. Assuming constant product demands and non-decreasing unit holding costs along the flow, an algorithm which obtains the optimal production policy is developed. This algorithm works for the discounted-cost function as well. The HJB equation is used to verify the optimality of the policy, and the computational complexity of the algorithm is discussed. Some illustrative examples are also included.  相似文献   

12.
Inventory policies for joint remanufacturing and manufacturing have recently received much attention. Most efforts, though, were related to (optimal) policy structures and numerical optimization, rather than closed form expressions for calculating near optimal policy parameters. The focus of this paper is on the latter. We analyze an inventory system with unit product returns and demands where remanufacturing is the cheaper alternative for manufacturing. Manufacturing is also needed, however, since there are less returns than demands. The cost structure consists of setup costs, holding costs, and backorder costs. Manufacturing and remanufacturing orders have non-zero lead times. To control the system we use certain extensions of the familiar (s, Q) policy, called push and pull remanufacturing policies. For all policies we present simple, closed form formulae for approximating the optimal policy parameters under a cost minimization objective. In an extensive numerical study we show that the proposed formulae lead to near-optimal policy parameters.  相似文献   

13.
We consider a supply chain consisting of one supplier with finite production capacity and a retailer facing independent and identically distributed demands from end-customers. Existing research advocates that, in a decentralized setting, the retailer and the supplier using stationary order up to policies is efficient. We show that in the presence of information sharing, the supply chain performance can be improved by the supplier offering fluctuating prices. We study two specific settings: (1) the supplier only knows the parameters of the retailer’s inventory policy; and (2) the supplier knows the day-to-day inventory levels at the retailer as well. After establishing structure of optimal policies and developing efficient solution procedures, we perform an extensive computational study to determine the extent of the improvements realizable in the supply chain. We observed that for setting 1, an improvement was realized only when the end-customer demands were highly variable. Even then, the improvement in supply chain performance was less than 1%. Whereas, for setting 2, the improvement in supply chain performance averaged around 5.0% with a maximum of 16.3%.  相似文献   

14.
In this paper, we consider an inventory system whose products share a common hardware platform but are differentiated by two types of software. Choice of different software results in different installation cost and different selling price of the whole product. Product with different software also faces different customer demand. We investigate the optimal proportion of an order to be installed with software 1 or 2, that maximizes expected profit in the single and multiple period scenarios, respectively. The optimal policy is analytically obtained and proved to be an order-up-to policy in each scenario. Our investigation reveals that whether to replenish, and how much to replenish each product depend not only on its own initial inventory level, and system parameters, but also the initial inventory level of the other product. We perform numerical experiments using the optimal policies we have derived in the paper.  相似文献   

15.
可替代产品库存模型的研究   总被引:4,自引:0,他引:4  
市场上,很多产品之间可相互替代,某种产品缺货时,可用另一种产品替代,也可以重新进货以满足顾客的需求。我们的目的是:从销售商的角度,讨论这两个因素对库存策略的影响。我们建立了这类问题有两个产品的单调期的利润最大化模型。证明了问题的解的存在性,给出了目标函数是凹函数和子模函数的充分条件,讨论了求解的方法和各参数对库存的影响。通过对几种特殊情况的讨论和比较,证明了替代和再订货可以提高利润并且可减少库存总量。  相似文献   

16.
Stochastic Multiproduct Inventory Models with Limited Storage   总被引:2,自引:0,他引:2  
This paper studies multiproduct inventory models with stochastic demands and a warehousing constraint. Finite horizon as well as stationary and nonstationary discounted-cost infinite-horizon problems are addressed. Existence of optimal feedback policies is established under fairly general assumptions. Furthermore, the structure of the optimal policies is analyzed when the ordering cost is linear and the inventory/backlog cost is convex. The optimal policies generalize the base-stock policies in the single-product case. Finally, in the stationary infinite-horizon case, a myopic policy is proved to be optimal if the product demands are independent and the cost functions are separable.  相似文献   

17.
A two-demand-class inventory system with lost-sales and backorders   总被引:1,自引:0,他引:1  
A periodic review inventory system serves two demand classes with different priorities. Unsatisfied demands in the high-priority class are lost, whereas those in the low-priority class are backlogged. We formulate the problem as a dynamic programming model and characterize the structure of the optimal replenishment policy.  相似文献   

18.
We study a pure assemble-to-order system subject to multiple demand classes where customer orders arrive according to a compound Poisson process. The finished product is assembled from m different components that are produced on m distinct production facilities in a make-to-stock fashion. We show that the optimal production policy of each component is a state-dependent base-stock policy and the optimal inventory allocation policy is a multi-level state-dependent rationing policy. Using numerical experimentation, we first study the system behavior as a function of order size variability and order size. We show that the optimal average cost rate is more sensitive to order size variability than to order size. We also compare the optimal policy to the first-come first-serve policy and show that there is great benefit to inventory rationing. We also propose two simple heuristics and show that these can effectively mimic the optimal policy which is generally much more difficult to determine and, especially, to implement.  相似文献   

19.
This paper is motivated by inventory problems arising in supply chains characterized by continuous replenishment programs based on information exchanged (reviewed) only intermittently between a manufacturing system (supplier) and a customer (retailer). When the replenishment is once-per-period, rather than at any point of time, a well-known result is the optimality of the so-called myopic base-stock policy. We generalize the notion of the base-stock policy and study the optimality of the corresponding class of dynamic myopic policies. We identify a myopic policy and prove that although the replenishment rule is dynamic, this policy is optimal when the demands are stationary and the number of review periods tends to infinity.  相似文献   

20.
In this paper a product recovery system for one product is investigated.The system contains one inventory for returned and recoverableitems and one for serviceable items. Demands are satisfied fromserviceable inventory where backlogging of demands is allowed.In addition, there is the possibility of disposal for the returnedproducts. We assume deterministic but dynamic return and demandrates and a linear cost structure. The Pontryagin maximum principleis used to determine the optimal production, remanufacturingand disposal policy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号