首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lithium secondary batteries with high power density need the electrode materials with both high specific capacity and high tap density. An “outer gel” method by TiCl4 as the raw material has been developed to prepare spherical precursor. High tap density spherical Li4Ti5O12 is synthesized by sintering the mixture of precursor and Li2CO3. La-doped Li4Ti5O12 is also prepared by this method. X-ray diffraction, scanning electron microscopy, energy-dispersive spectrometry, tap density testing, and the determination of the electrochemical properties show that the Li4Ti5O12 powders prepared by this method are spherical and exhibits high tap density. La3+ dopant improved the electrochemical performance over the pristine Li4Ti5O12. It is tested that the tap density of the pristine and La3+-doped products is as high as 1.80 and 1.78 g•cm−3, respectively. Between 1.0 and 3.0 V versus Li, the initial discharge capacity of the La3+ dopant is as high as 161.5 mAh•g−1 at 0.1C rate. After 50 cycles, the reversible capacity is still 135.4 mAh•g−1.  相似文献   

2.
Spinel Li4Ti5O12 nanoparticles were prepared via a high-temperature solid-state reaction by adding the prepared cellulose to an aqueous dispersion of lithium salts and titanium dioxide. The precursors of Li4Ti5O12 were characterized by thermogravimetry and differential scanning calorimetry. The obtained Li4Ti5O12 nanoparticles were characterized using X-ray diffraction, transmission electron microscopy (TEM) and electrochemical measurements. The TEM revealed that the Li4Ti5O12 prepared with cellulose is composed of nanoparticles with an average particle diameter of 20–30 nm. Galvanostatic battery testing showed that nano-sized Li4Ti5O12 exhibit better electrochemical properties than submicro-sized Li4Ti5O12 do especially at high current rates, which can deliver a reversible discharge capacity of 131 mAh g−1 at the rate of 10 C, whereas that of the submicro-sized sample decreases to 25 mAh g−1 at the same rate (10 C). Its reversible capacity is maintained at ~172.2 mAh g−1 with the voltage range 1.0–3.0 V (vs. Li) at the current rate of 0.5 C for over 80 cycles.  相似文献   

3.
The effects of dopant on the electrochemical properties of spinel-type Li3.97M0.1Ti4.94O12 (M = Mn, Ni, Co) and Li(4-x/3)CrxTi(5-2x/3)O12(x = 0.1, 0.3, 0.6, 0.9, 1.5) were systematically investigated. Charge-discharge cycling were performed at a constant current density of 0.5 mA/cm2 between the cut-off voltages of 3.0 and 1.0 V, the experimental results showed that Cr3+ dopant improved the reversible capacity and cycling stability over the pristine Li4Ti5O12. The substitution of the Mn3+ and Ni3+ slightly decreased the capacity of the Li4Ti5O12. Dopants such as Co3+ to some extent worsened the electrochemical performance of the Li4Ti5O12.  相似文献   

4.
The olivine-type LiFePO4/C cathode materials were prepared via carbothermal reduction method using cheap Fe2O3 as raw material and different contents of glucose as the reducing agent and carbon source. Their structural and morphological properties were investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope, and particle size distribution analysis. The results demonstrated that when the content of the carbon precursor of glucose was 16 wt.%, the synthesized powder had good crystalline and exhibited homogeneous and narrow particle size distribution. Even and thin coating carbon film was formed on the surface of LiFePO4 particles during the pyrolysis of glucose, resulting in the enhancement of the electronic conductivity. Electrochemical tests showed that the discharge capacity first increased and then decreased with the increase of glucose content. The optimal sample synthesized using 16 wt.% glucose as carbon source exhibited the highest discharge capacity of 142 mAh g−1 at 0.1C rate with the capacity retention rate of 90.4% and 118 mAh g−1 at 0.5C rate.  相似文献   

5.
In order to improve the rate capability of Li4Ti5O12, Ti4O7 powder was successfully fabricated by improved hydrogen reduction method, then a dual-phase composite Li4Ti5O12/Ti4O7 has been synthesized as anode material for lithium-ion batteries. It is found that the Li4Ti5O12/Ti4O7 composite shows higher reversible capacity and better rate capability compared to Li4Ti5O12. According to the charge-discharge tests, the Li4Ti5O12/Ti4O7 composite exhibits excellent rate capability of 172.3 mAh g?1 at 0.2 C, which is close to the theoretical value of the spinel Li4Ti5O12. More impressively, the reversible capacity of Li4Ti5O12/Ti4O7 composite is 103.1 mAh g?1 at the current density of 20 C after 100th cycles, and it maintains 84.8% of the initial discharge capacity, whereas that of the bare spinel Li4Ti5O12 is only 22.3 mAh g?1 with a capacity retention of 31.1%. The results indicate that Li4Ti5O12/Ti4O7 composite could be a promising anode material with relative high capacity and good rate capability for lithium-ion batteries.  相似文献   

6.
Solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 was prepared by sol-gel method under different sintering conditions. The structural identification, surface morphology, electrochemical window, ionic conductivity, and activation energy of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets were investigated by X-ray diffraction, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. It is found that the sintering temperature and time have considerable effect on the properties of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets. The Li1.3Al0.3Ti1.7(PO4)3 pellet sintered at 900 °C for 2 h is denser than the pellets sintered at other conditions. Different sintering conditions result in the sintered pellet with different porosity. However, the sintering conditions have little effect on the electrochemical window of Li1.3Al0.3Ti1.7(PO4)3. Among the Li1.3Al0.3Ti1.7(PO4)3 pellets sintered at various conditions, the pellet sintered at 900 °C for 2 h shows the highest ionic conductivity of 3.46 × 10−4 S cm−1 and the lowest activation energy of 0.2821 eV.  相似文献   

7.
S/Li4Ti5O12 cathode with high lithium ionic conductivity was prepared for Li-S battery. Herein, nano Li4Ti5O12 is used as sulfur host and fast Li+ conductor, which can adsorb effectively polysulfides and improve remarkably Li+ diffusion coefficient in sulfur cathode. At 0.5 C, S/Li4Ti5O12 cathode has a stable discharge capacity of 616 mAh g?1 at the 700th cycle and a capacity loss per cycle of 0.0196% from the second to the 700th cycle, but the corresponding values of S/C cathode are 437 mAh g?1 and 0.0598%. Even at 2 C, the capacity loss per cycle of S/Li4Ti5O12 cathode is only 0.0273% from the second to the 700th cycle. The results indicate that Li4Ti5O12 as the sulfur host plays a key role on the high performance of Li-S battery due to reducing the shuttle effect and enhancing lithium ionic conductivity.  相似文献   

8.
In the present paper, we describe utilization of cathode active material as anode active material, for example, Li2MnSiO4. The lithium manganese silicate has been successfully synthesized by solid-state reaction method. The X-ray diffraction pattern confirms the orthorhombic structure with Pmn2 1 space group. The Li/Li2MnSiO4 cell delivered the initial discharge capacity of 420 mA h g−1, which is 110 mA h g−1 higher than graphitic anodes. The electrochemical reversibility and solid electrolyte interface formation of the Li2MnSiO4 electrode was emphasized by cyclic voltammetry.  相似文献   

9.
Carbon encapsulated Li4Ti5O12 (C/Li4Ti5O12) anode material for lithium ion battery was prepared by using the pre-coat method of two steps, and the TiO2 was pre coated before the reaction with Li2CO3. The structure and morphology of the resultant C/Li4Ti5O12 materials were characterized by X-ray diffraction (XRD) and scanning microscopy (SEM). Electrochemical tests showed that at 0.1 C, the initial discharge capacity was 169.9 mAh g?1, and the discharge capacity was 80 mAh g?1 at 5 C. After 100 cycles at 2 C, the discharge specific capacity was 108.5 mAh g?1. Compare with one step coating method, results showed the C/Li4Ti5O12 prepared by pre-coat method can reduce the particle’s size and effectively improve the electrochemical performance.  相似文献   

10.
One-dimensional Co2+-doped Li4Ti5O12 nanofibers with a diameter of approximately 500 nm have been synthesized via a one-step controllable electrospinning method. The Co2+-doped Li4Ti5O12 nanofibers were systematically characterized by XRD, ICP, TEM, SEM, BET, EDS mapping, and XPS. Based on the cubic spinel structure and one-dimensional effect of Li4Ti5O12, Co2+-doped Li4Ti5O12 nanofibers exhibit the enlarged lattice volume, reduced particle size and enhanced electrical conductivity. More importantly, Co2+-doped Li4Ti5O12 nanofibers as a lithium ion battery anode electrode performs superior electrochemical performance than undoped Li4Ti5O12 electrode in terms of electrochemical measurements. Particularly, the reversible capacity of Co2+-doped Li4Ti5O12 electrode reaches up to 140.1 mAh g?1 and still maintains 136.5 mAh g?1 after 200 cycles at a current rate of 5 C. Therefore, one-dimensional Co2+-doped Li4Ti5O12 nanofiber electrodes, showing high reversible capacity and remarkable recycling property, could be a potential candidate as an anode material.  相似文献   

11.
Li4Ti5O12/Cu2O composite was prepared by ball milling Li4Ti5O12 and Cu2O with further heat treatment. The structure and electrochemical performance of the composite were investigated via X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge tests. Li4Ti5O12/Cu2O composite exhibited much better rate capability and capacity performance than pristine Li4Ti5O12. The discharge capacity of the composite at 2 C rate reached up to 122.4 mAh g?1 after 300 cycles with capacity retention of 91.3 %, which was significantly higher than that of the pristine Li4Ti5O12 (89.6 mAh g?1). The improvement can be ascribed to the Cu2O modification. In addition, Cu2O modification plays an important role in reducing the total resistance of the cell, which has been demonstrated by the electrochemical impedance spectroscopy analysis.  相似文献   

12.
Pr-doped Li4Ti5O12 in the form of Li4?x/3Ti5?2x/3PrxO12 (x = 0, 0.01, 0.03, 0.05, and 0.07) was synthesized successfully by an electrospinning technique. ICP shows that the doped samples are closed to the targeted samples. XRD analysis demonstrates that traces of Pr3+ can enlarge the lattice parameter of Li4Ti5O12 from 8.3403 to 8.3765 Å without changing the spinel structure. The increase of lattice parameter is beneficial to the intercalation and de-intercalation of lithium-ion. XPS results identify the existence form of Ti is mainly Ti4+ and Ti3+ in minor quantity in Li4?x/3Ti5?2x/3PrxO12 (x = 0.05) samples due to the small amount of Pr3+. The transition from Ti4+ to Ti3+ is conducive to the electronic conductivity of Li4Ti5O12. FESEM images show that all the nanofibers are well crystallized with a diameter of about 200 nm and distributed uniformly. The results of electrochemical measurement reveal that the 1D Li4?x/3Ti5?2x/3PrxO12 (x = 0.05) nanofibers display enhanced high-rate capability and cycling stability compared with that of undoped nanofibers. The high-rate discharge capacity of the Li4?x/3Ti5?2x/3PrxO12 (x = 0.05) samples is excellent (101.6 mAh g?1 at 50 °C), which is about 58.48 % of the discharge capacity at 0.2 °C and 4.3 times than that of the bare Li4Ti5O12 (23.5 mA g?1). Even at 10 °C (1750 mA g?1), the specific discharge capacity is still 112.8 mAh g?1 after 1000 cycles (87.9 % of the initial discharge capacity). The results of cyclic voltammograms (CV) and electrochemical impedance spectroscopy (EIS) illustrate that the Pr-doped Li4Ti5O12 electrodes possess better dynamic performance than the pure Li4Ti5O12, further confirming the excellent electrochemical properties above.  相似文献   

13.
A new member of the family of garnets with fast lithium ion conduction has been found with the composition Li7La3Hf2O12. The anion arrangement corresponds to the oxygen framework in garnets, e.g., in Ca3Fe2Si3O12. Hafnium is coordinated octahedrally while the lanthanum environment can be described as a distorted cube. Lithium occupies a large number of positions with tetrahedral, trigonal planar, and metaprismatic coordination. Li7La3Hf2O12 shows a lithium bulk ion conductivity of 2.4 × 10−4 Ω−1 cm−1 at room temperature with an activation energy of 0.29 eV.  相似文献   

14.
Among the several materials under development for use as a cathodes in lithium-ion batteries olivine-type LiFePO4 is one of the most promising cathode material. However, its poor conductivity and low lithium-ion diffusion limits its practical application. In this study, we report seven different carboxylic acids used to synthesize LiFePO4/C composite, and influences of carbon sources on electrochemical performance were intensively studied. The structure and electrochemical properties of the LiFePO4/C were characterized by X-ray diffraction, scanning electron microscopy, electrical conductivity, and galvanostatic charge–discharge measurements. Among the materials studied, the sample E with tartaric acid as carbon source exhibited the best cell performance with a maximum discharge capacity of 160 mAh g−1 at a 0.1 C-rate. The improved electrochemical properties were attributed to the reduced particle size and enhanced electrical contacts by carbon.  相似文献   

15.
M. Ganesan 《Ionics》2008,14(5):395-401
Chromium-substituted Li4Ti5O12 has been investigated as a negative electrode for future lithium batteries. It has been synthesized by a solid-state method followed by quenching leading to a micron-sized material. The minimum formation temperature of Li4Ti2.5Cr2.5O12 was found to be around 600 °C using thermogravimetric and differential thermal analysis. X-ray diffraction, scanning electron microscopy, cyclic voltammetry (CV), impedance spectroscopy, and charge–discharge cycling were used to evaluate the synthesized Li4Ti2.5Cr2.5O12. The particle size of the powder was around 2–4 μm. CV studies reveal a shift in the deintercalation potential by about 40 mV, i.e., from 1.54 V for Li4Ti5O12 to 1.5 V for Li4Ti2.5Cr2.5O12. High-rate cyclability was exhibited by Li4Ti2.5Cr2.5O12 (up to 5  C) compared to the parent compound. The conduction mechanism of the compound was examined in terms of the dielectric constant and dissipation factor. The relaxation time has been evaluated and was found to be 0.07 ms. The mobility was found to be 5.133 × 10−6 cm2 V−1 s−1.  相似文献   

16.
Several olivine phosphates were investigated in the last years as cathode materials for secondary lithium ion batteries. Among these compounds, LiFe x Co1 − x PO4 solid solutions might be interesting candidates because they should combine the high potential value of Co3+/Co2+ (higher than 4.5 V vs Li+/Li) with the relatively high charge–discharge rate of LiFePO4. Solid solutions were prepared by solid-state route and characterised by X-ray powder diffraction, cyclic voltammetry, impedance spectroscopy and the Hebb–Wagner method. The results show that also low amount of iron induces high electronic conductivity in the solid solutions.  相似文献   

17.
The Li4Ti5O12 is applied in lithium ion batteries as anode material, which can be synthesized by various synthesis techniques. In this study, the molten salt synthesis technique at low temperatures, i.e. 350 °C, was applied to synthesize Li4Ti5O12. Surprisingly, the Li4Ti5O12 was not formed according to XRD analysis, which raised question about the stability range of Li4Ti5O12. To investigate the stability of Li4Ti5O12 at low temperatures, the high-temperature calcined Li4Ti5O12 powder was equilibrated in the LiCl-KCl eutectic salt at 350 °C. The result of experiment revealed that the Li4Ti5O12 is not decomposed. Results of ab initio calculations also indicated that the Li4Ti5O12 phase is a stable phase at 0 K. The products of molten salt synthesis technique were then annealed at 900 °C, which resulted in the Li4Ti5O12 formation. It was concluded that the Li4Ti5O12 is a stable phase at low temperatures and the reasons for not forming the Li4Ti5O12 by molten salt technique at low temperature are possibly related to activation energy and kinetic barriers. The Li4Ti5O12 formation energy is also very small, due to the results of ab initio calculations.  相似文献   

18.
This work is devoted to the study of fundamental properties of LiFePO4 (LFP) olivine in view of the optimization of this material for its use as a positive electrode material in Li-ion batteries. The investigation of the electronic and magnetic properties appears to be successful for the detection of a small amount of impurities. By the combination of X-ray diffraction, optical spectroscopy, and magnetometry, we characterize the local structure and the morphology of LFP particles. The impact of the ferromagnetic clusters (γ-Fe2O3 or Fe2P) on the electrochemical response is examined. The electrochemical performance of the optimized LFP powders investigated at 60 °C is excellent in terms of capacity retention (153 mAh/g at 2 C) as well as cycling life. No iron dissolution was observed after 200 charge–discharge cycles at 60 °C for cells containing Li foil, Li4Ti5O12, or graphite as negative electrodes. Paper presented at the 11th Euro-Conference on Science and Technology of Ionics, Batz-sur-Mer, France, 9–15 Sept. 2007.  相似文献   

19.
Nanocrystalline CaCu3Ti4O12 powders with particle sizes of 50–90 nm were synthesized by a simple method using Ca(NO3)2·4H2O, Cu(NO3)2·4H2O, titanium(diisoproproxide) bis(2,4-pentanedionate) and freshly extracted egg white (ovalbumin) in aqueous medium. The synthesized precursor was characterized by TG-DTA to determine the thermal decomposition and crystallization temperature which was found to be at above 400 °C. The precursor was calcined at 700 and 800 °C in air for 8 h to obtain nanocrystalline powders of CaCu3Ti4O12. The calcined CaCu3Ti4O12 powders were characterized by XRD, FTIR, SEM and TEM. Sintering of the powders was conducted in air at 1100 °C for 16 h. The XRD results indicated that all sintered samples have a typical perovskite CaCu3Ti4O12 structure and a small amount of CuO, although the sintered sample of the 700 °C calcined powders contained some amount of CaTiO3. SEM micrographs showed the average grain sizes of 12.0±7.8 and 15.5±8.9 μm for the sintered CaCu3Ti4O12 ceramics prepared using the CaCu3Ti4O12 powders calcined at 700 and 800 °C, respectively. The sintered samples exhibit a giant dielectric constant, ε of ∼ 1.5–5×104. The dielectric behavior of both samples exhibits Debye-like relaxation, and can be explained based on a Maxwell–Wagner model. PACS 77.22.Gm; 81.05.Je; 81.07.Wx; 81.20.Ev  相似文献   

20.
M RIAZIAN  A BAHARI 《Pramana》2012,78(2):319-331
TiO2 Nano rods can be used as dye-sensitized solar cells, various sensors and photocatalysts. These nanorods are synthesized by a hydrothermal corrosion process in NaOH solution at 200°C using TiO2 powder as the source material. In the present work, the synthesis of TiO2 nanorods in anatase, rutile and Ti7O13 phases and synthesis of TiO2 nanorods by incorporating SiO2 dopant, using the sol–gel method and alkaline corrosion are reported. The morphologies and crystal structures of the TiO2 nanorods are characterized using field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) study. The obtained results show not only an aggregation structure at high calcination temperatures with spherical particles but also Ti–O–Si bonds having four-fold coordination with oxygen in SiO4 − .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号