首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relation between the first-order Raman profile and the absorption spectrum of a scattering centre is generalized, taking into consideration the dependence of the electronic matrix elements on nuclear coordinates, i.e. the violation of Condon approximation. Employing simultaneously the Condon and non-Condon terms, their destructive interference appears in the Raman profile as an antiresonance. Depending on the sign of the non-Condon term, the antiresonance can occur on the long- or the short-wave side from the absorption maximum. This asymmetry allows the antiresonance to be distinguished from the one caused by the interference of different electronic levels, which can appear simultaneously on both sides towards the absorption maximum.  相似文献   

2.
Based on a microscopic model of the electron-phonon interaction, we have calculated the shape of the 4f 135d-4f 14 electronic-vibrational luminescence spectrum of a LiYF4:Lu3+ crystal at zero temperature taking into account the quadratic non-Condon effect. We have found that the magnitude of the quadratic non-Condon effect of this spectrum is several times greater than the magnitude of the linear non-Condon effect. We have formulated conditions under which the zero-phonon line can be observed in absorption and luminescence spectra of this transition, which is forbidden at zero temperature. It has been proven that, if the point symmetry group of the environment of an impurity center does not have mathematically irreducible representations with a dimension higher than unity, no zero-phonon line will be observed in these spectra. We have given an explanation for the absence of the zero-phonon line in 4f 14-4f 135d absorption and luminescence spectra of the LiYF4:Lu3+ crystal at low temperatures.  相似文献   

3.
The method of calculating the interzone light absorption coefficient in a semiconductor with Coulomb-like random field developed by Bonch-Bruevich is generalized by inclusion of multiphonon processes. A formula is obtained for the frequency dependence of the absorption coefficient in the optical tail range in the Condon approximation with neglect of frequency effect.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 64–67, July, 1981.In conclusion, the author expresses his gratitude to V. L. Bonch-Bruevich for his interest in the study.  相似文献   

4.
The single-electron states in a quantized cylindrical layer in the presence of a strong homogeneous electric field have been considered in the isotropic effective mass approximation. The energy spectrum and the envelope wave functions of charge carriers in the layer have been obtained in the explicit form. It has been shown that a strong external electric field leads to an additional localization of carriers in their angular motion. The corresponding selection rules have been derived, and the absorption band of intraband-intersubband optical transitions in the layer has been calculated.  相似文献   

5.
We investigate the behavior of optical absorption of boron–nitride nanotubes (6,0) in the context of Hubbard model at the paramagnetic sector. GW approximation has been implemented in order to make self-energy matrix of electronic system. Afterwards, the real and imaginary parts of transverse dielectric functions have been obtained using linear response theory. The results show that the frequency gap in the optical absorption decreases with Coulomb repulsion strength. Moreover the results show that the local Coulomb interaction leads to the appearance of the excitonic effects in the optical spectrum. Finally the effects of electronic concentration on the frequency behavior of imaginary part of dielectric function have been investigated.  相似文献   

6.
Vibrational structures of four electronic bands of thioformamide were examined: Three were observed at 8.70, 9.30, and 15.52 eV in the photoelectron spectrum, and one was observed at 230 nm in the absorption spectrum. The four corresponding bands of thioformamide-d2 have also been examined. On the Condon approximation, and on the assumption that the vibrations are all harmonic, the amount of shift in the potential minimum along each normal coordinate, which is caused by each electronic transition (ionization or excitation), has been estimated.  相似文献   

7.
The optical transition energies have been determined for the lowest electron-hole pair states of CdSe quantum dots embedded in glass. The data obtained by photoluminescence, differential absorption and photoluminescence excitation spectroscopy have been compared and a general size dependence could be established. Based on theoretical calculations, the dominant features in the spectra have been assigned to the different transitions from the ground state to the one-pair states. Within the lowest one pair transition, a fine structure due to exchange interaction has been observed. The change in the optical properties with increasing intensity has been studied and the two-pair states identified in luminescence. Spectrally broad optical gain has been found due to stimulated transitions involving both one- and two-pair states.  相似文献   

8.
运用密度泛函平面波赝势方法和广义梯度近似,对替代式掺杂Cu和Zn的闪锌矿AlSb的超晶胞晶体结构、电子结构和光学性质进行了计算。分析了其电子态分布和结构的关系,给出了掺杂前后AlSb体系的复介电常数和复折射函数。结果表明,掺有Cu和Zn的AlSb晶体空穴密度增大,会明显提高材料的电导率;两种掺杂体系光学带隙均变窄;通过分析掺杂前后AlSb晶体的复介电常数和复折射函数,解释了体系的发光机制。  相似文献   

9.
Using the first-principles density-functional theory within the generalized gradient approximation (GGA), we have investigated the structural, elastic, mechanical, electronic, and optical properties and phase transition of CuInO2. Structural parameters including lattice constants and internal parameter, pressure effects and phase transition pressure were calculated. We have obtained the elastic coefficients, bulk modulus, shear modulus, Young's modulus and Poisson's ratio. We find that two phases of CuInO2 are indirect band gap semiconductors (F–Γ and H–Γ for 3R and 2H, respectively). Optical properties, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function and optical conductivity have been obtained for radiations of up to 30 eV.  相似文献   

10.
The low frequency portions of the impurity optical absorption coefficient, produced by the presence of a quasiclassical, i.e., slowly changing over space, Gaussian random force field, are calculated by the Green function method. In the rigid (undeformed by electron transition) lattice approximation, the tail of the absorption coefficient for an isotropic nondegenerate semiconductor will have an exponential form. It is shown that under certain conditions consideration of multiphonon processes has no significant effect on the form of the absorption coefficient curve, but leads only to a certain shift in the threshold frequencies.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 96–102, February, 1973.The author expresses his deep gratitude to V. L. Bonch-Bruevich for his constant interest in the work and valuable advice.  相似文献   

11.
The optical absorption coefficient γ of a thin film of a Peierls semiconductor has been calculated in the dipole approximation for direct interband transitions as a function of intensity I and central frequency ω0 of a quasi-monochromatic frequency spectrum near the lower optical transition edge. It is shown that the γ(I, ω0) dependence is strongly nonlinear, and within a certain region of I and ω0 variation, not single-valued, which indicates the onset of resonator-free optical bistability with increasing absorption.  相似文献   

12.
We report the results of our experimental study and numerical simulation of the electronic excitation energy transfer to impurity centers under conditions where nonstationary processes take place in the hydrogen sublattice of potassium dihydrogen phosphate (KH2PO4) single crystals doped with mercury-like Tl+ ions (KDP:Tl). We present the experimental results of our investigation of the decay kinetics of the transient optical absorption (100 ns–50 s) of intrinsic defects in the hydrogen sublattice of KDP:Tl obtained by pulsed absorption spectroscopy and the results of our study of the dynamics of the change in steady-state luminescence intensity with irradiation time (1–5000 s). To explain the transfer of the energy being released during electron recombination involving intrinsic KDP:Tl lattice defects, we formulate a mathematical model for the transfer of this energy to impurity Tl+ luminescence centers. Within the model being developed, we present the systems of differential balance equations describing the nonstationary processes in the electron subsystem and the hydrogen sublattice; provide a technique for calculating the pair correlation functions Y(r, t) of dissimilar defects based on the solution of the Smoluchowski equation for the system of mobile hydrogen sublattice defects; calculate the time-dependent reaction rate constants K(t) for various experimental conditions; and outline the peculiarities and results of the model parametrization based on our experimental data. Based on our investigation, the dramatic and significant effect of a gradual inertial increase by a factor of 50–100 in steady-state luminescence intensity in the 4.5-eV band in KDP:Tl crystals due to the luminescence of mercury-like Tl+ ions has been explained qualitatively and quantitatively.  相似文献   

13.
The dispersion law for electrons has been derived by the Green’s function method using the Anderson periodic model, which has been proposed to describe the electron subsystem in carbon nanotubes and graphene with impurities. The combined dynamics of electrons and an electromagnetic field has been considered in the low-temperature limit, and the effective equation describing the propagation of ultrashort optical pulses has been obtained. The solutions to this equation as functions of the parameters of the problem have been presented.  相似文献   

14.
The absorption cross section of highly luminescent individual single-walled carbon nanotubes is determined using time-resolved and cw luminescence spectroscopy. A mean value of approximately 1 x 10(-17) cm2 per carbon atom is obtained for (6,5) tubes excited at their second optical transition, and corroborated by single tube photothermal absorption measurements. Biexponential luminescence decays are systematically observed, with short and long lifetimes around 45 and 250 ps. This behavior is attributed to the band edge exciton fine structure with a dark level lying a few meV below a bright one.  相似文献   

15.
We solve Chandrasekhar's integration equation for radiative transfer in the plane-parallel atmosphere by iterative integration. The primary thrust in radiative transfer has been to solve the forward problem, i.e., to evaluate the radiance, given the optical thickness and the scattering phase function. In the area of satellite remote sensing, our problem is the inverse problem: to retrieve the surface reflectance and the optical thickness of the atmosphere from the radiance measured by satellites. In order to retrieve the optical thickness and the surface reflectance from the radiance at the top-of-the atmosphere (TOA), we should express the radiance at TOA “explicitly” in the optical thickness and the surface reflectance. Chandrasekhar formalized radiative transfer in the plane-parallel atmosphere in a simultaneous integral equation, and he obtained the second approximation. Since then no higher approximation has been reported. In this paper, we obtain the third approximation of the scattering function. We integrate functions derived from the second approximation in the integral interval from 1 to ∞ of the inverse of the cos of zenith angles. We can obtain the indefinite integral rather easily in the form of a series expansion. However, the integrals at the upper limit, ∞, are not yet known to us. We can assess the converged values of those series expansions at ∞ through calculus. For integration, we choose coupling pairs to avoid unnecessary terms in the outcome of integral and discover that the simultaneous integral equation can be deduced to the mere integral equation. Through algebraic calculation, we obtain the third approximation as a polynomial of the third degree in the atmospheric optical thickness.  相似文献   

16.
The optical transmission and ion-induced luminescence under implantation of copper ions into quartz glass (a-SiO2) have been measured to study the processes of formation of copper nanoparticles. It is shown that in situ measurements are more informative in comparison with the ordinary approach—investigation of the properties of ion-implanted nanocomposites only after implantation. A series of experiments was performed to prove that the ion-induced luminescence band at 545–550 nm is due to Cu+ ions dissolved in a-SiO2. The combined use of in situ optical techniques makes it possible to monitor the states of implanted copper (metal nanoparticles and dissolved atoms) by the change in the optical absorption near the surface plasmon resonance of nanoparticles and by the intensity of ion-induced luminescence of Cu+ states in solid solution. It is shown that the optical bands of defects, dissolved copper, and nanoparticles can be separated within a simple linear approximation. Near the surface plasmon resonance and defect bands, ion-induced transient optical absorption has been revealed. The transient optical absorption near the surface plasmon resonance is explained by the temperature effect. The relationship between the electronic excitation, radiation-induced optical response, and the kinetics of nanoparticle formation is analyzed. Several stages of nanoparticle formation have been established: accumulation of implanted copper in solid solution, nucleation of nanoparticles, coalescence, growth of nanoparticles, and saturation of nanocomposites.  相似文献   

17.
The optical absorption and refractive index of a donor impurity confined by a three-dimensional quantum pseudodot are studied using the matrix diagonalization method within the effective-mass approximation. The great advantage of our methodology is that it enables us to tune confinement strength and regime by varying two parameters in the model potential. Based on the computed energies and wave functions, the linear, third-order nonlinear and total optical absorption coefficients as well as the refractive index changes have been examined. The results are presented as a function of the incident photon energy for the different values of the chemical potential of the electron gas and the zero point of the pseudoharmonic potential. We find that the larger optical nonlinearity will be obtained by varying the zero point of the pseudoharmonic potential compared to the chemical potential of electron gas.  相似文献   

18.
Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
郭建云  郑广  何开华  陈敬中 《物理学报》2008,57(6):3740-3746
基于密度泛函理论,采用广义梯度近似方法,计算了Al,Mg掺杂的闪锌矿型GaN的电子结构和光学性质,分析了其电子态分布与结构的关系,给出了掺杂前后GaN体系的介电函数和复折射率函数.计算结果表明掺有Mg的GaN晶体空穴浓度增大,会明显提高材料的电导率,而Al掺杂GaN晶体的载流子浓度不变,只是光学带隙变宽;通过分析掺杂前后GaN晶体的介电函数和复折射率函数,解释了体系的发光机理,为GaN材料光电性能的进一步开发与应用提供了理论依据.通过比较可知,所得出的计算结果与现有文献符合得很好. 关键词: GaN晶体 电子结构 光学性质 掺杂  相似文献   

19.
The uniform quasi-classical approximation [14] is used to describe the optical spectra formed during asymmetric collisions between atoms of rare gases in which one of the atoms is in a metastable state. We consider the reactions He(21S) + Ne → He(11S) + Ne + ?ω and Ar(3P2) + He → Ar(1S) + He + ?ω, in which the optical transition mechanisms are typical of most rare gases. Quasi-molecular terms of excited states and radiative widths calculated in a unified semiempirical approach are used. Spectral characteristics are calculated for thermal collision energies in the entire frequency range, including the center and both wings of the forbidden line. For the blue wing, our results are consistent with the widely used Condon approximation at collision energies E ≥200 cm?1. At lower collision energies and in the region of the red wing and center of the forbidden line, the spectral distributions that cannot be described in the Condon approximation are reproduced in the uniform quasi-classical approximation. Comparison with quantum-mechanical calculations by the strong-coupling method confirms the high accuracy of the uniform quasi-classical approximation in the entire range of radiation frequencies.  相似文献   

20.
The electronic structure, linear, and non-linear optical properties of ferroelectric-semiconductor SbSBr are investigated in the non-polar (paraelectric) and polar (ferroelectric) phase, using the density functional methods in the generalized gradient approximation. The electronic band structure obtained shows that SbSBr has an indirect forbidden gap of 2.16 and 2.21 eV in the paraelectric and ferroelectric phase, respectively. The linear photon-energy dependent dielectric functions and some optical functions, such as absorption and extinction coefficients, refractive index, energy-loss function, reflectivity, and optical conductivity in both phases and photon-energy dependent second-order susceptibilities in the ferroelectric phase are calculated. Moreover, some important optical parameters, such as the effective number of valence electrons and the effective optical dielectric constant, are calculated in both phases.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号