首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The corrosion and corrosion inhibition effect of carboxymethyl cellulose (CMC) for mild steel in sulphuric acid medium was investigated using chemical (weight loss and hydrogen evolution) techniques at 30–60 °C. The effect of addition of halide ions (Cl, Br, and I) was also studied. It was found that CMC functions as an inhibitor for acid induced corrosion for mild steel. Inhibition efficiency increases with increase in immersion time but decreases with increase in temperature. Addition of halide ions reveals that chloride ions (Cl) antagonize the inhibition process whereas iodide ions (I) exert synergistic effect on the corrosion inhibition by CMC. Corrosion inhibitive effect was afforded by adsorption of CMC molecules onto the mild steel surface both in the absence and presence of halide ions which was found to follow Langmuir adsorption isotherm model. The phenomenon of physical adsorption is proposed from decrease in inhibition efficiency with increase in temperature. The inhibition mechanism was further corroborated by the values of thermodynamic and kinetic parameters obtained from the experimental data.  相似文献   

2.
The inhibiting behavior of Nile Blue and Indigo Carmine organic dyes on mild steel corrosion was evaluated in 1 M HCl solution, separately, by weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy techniques. Results show that the inhibition efficiency (%IE) increases with the increasing concentration of Indigo Carmine up to 9.65 × 10−05 M (%IE ~ 98) and Nile Blue up to 1.08 × 10−04 (%IE ~ 75–80). Good agreement was found between the results obtained from the different techniques used. Polarization curves indicate that the inhibition of the both inhibitors is of a mixed anodic–cathodic nature, and Langmuir isotherm is found to be an accurate isotherm describing the adsorption behavior. The inhibition mechanism of the inhibitors involves chemisorption interaction between the inhibitor and the mild steel. The inhibition efficiency for both inhibitors decreased by the rising temperature in the range of 25–55 °C, and these results verified the chemisorption behavior of both the inhibitors.  相似文献   

3.
The corrosion inhibition of X-70 pipeline steel in saltwater saturated with CO2 at 50 °C with carboxyamido imidazoline has been evaluated by using electrochemical techniques. Techniques included polarization curves, linear polarization resistance, electrochemical impedance, and electrochemical noise measurements. Inhibitor concentrations were 0, 1.6 × 10−5, 3.32 × 10−5, 8.1 × 10−5, 1.6 × 10−4, and 3.32 × 10−4 mol l−1. All techniques showed that the best corrosion inhibition was obtained by adding 8.1 × 10−5 mol l−1 of carboxyamido imidazoline. For inhibitor concentrations higher than 8.1 × 10−5 mol l−1 a desorption process occurs, and an explanation has been given for this phenomenon.  相似文献   

4.
The corrosion behaviour of mild steel and aluminium exposed to H2SO4 solution and their inhibition in H2SO4 containing 0.1–0.5 g/L Gum Arabic (GA) used as inhibitor was studied at temperature range of 30–60 °C using weight loss and thermometric techniques. Corrosion rate increased both in the absence and presence of inhibitor with increase in temperature. Corrosion rate was also found to decrease in the presence of inhibitor compared to the free acid solution. Inhibition efficiency increases with increase in concentration of the inhibitor reaching a maximum of 37.88% at 60 °C for mild steel and 79.69% at 30 °C for aluminium at 0.5 g/L concentration of GA. The inhibitor, GA was found to obey Temkin and El-Awady et al. thermodynamic kinetic adsorption isotherm for mild steel and aluminium respectively from the fit of the experimental data at all concentrations and temperatures studied. The phenomenon of chemical adsorption is proposed for mild steel corrosion, while physical adsorption mechanism is proposed for aluminium corrosion. Results obtained for the kinetic/thermodynamic studies indicate that the adsorption of GA onto the metals surface was spontaneous. GA is a better corrosion inhibitor for aluminium than for mild steel.  相似文献   

5.
Alternating current (AC) impedance measurements of mild steel/sulfuric acid interface in the absence and in the presence of various concentrations of cystine (Cys–Cys) have been carried out in the 100 kHz–10 mHz frequency range. The results revealed that Cys–Cys is a good and effective inhibitor for mild steel corrosion in 0.5 M H2SO4 and its percent inhibition efficiency changes with its concentration. Changes in impedance parameters indicated the adsorption of Cys–Cys on the mild steel surface, which was verified by scanning electron microscope (SEM) and atomic force microscope (AFM) photographs. Adsorption of Cys–Cys on mild steel surface was found to obey the Langmuir adsorption isotherm with a standard free energy of adsorption of −33.2 kJ/mol. Energy gaps for the interactions between mild steel surface and Cys–Cys molecule were found to be close to each other showing that Cys–Cys owns capacity to behave as both electron donor and electron acceptor.  相似文献   

6.
The corrosion inhibitive and adsorption behaviors of Hydroclathrus clathratus on mild steel in 1 M HCl and 1 M H2SO4 solutions at 303, 313 and 323 K were investigated by weight loss, electrochemical, and surface analysis techniques. The results show that H. clathratus acts as an inhibitor of corrosion of mild steel in acid media. The inhibition efficiency was found to increase with increase in inhibitor concentration but to decrease with rise in temperature, suggestive of physical adsorption. The adsorption of the inhibitor onto the mild steel surface was found to follow the Temkin adsorption isotherm. The inhibition mechanism was further corroborated by the results obtained from electrochemical methods. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses supported the inhibitive action of the alga against acid corrosion of mild steel.  相似文献   

7.
The inhibition mechanism of pitting corrosion of natural oxide film-covered pure aluminum by NO 3 and SO2− 4 ions has been examined in 0.1 M NaCl solution using potentiodynamic polarization experiments, a.c. impedance spectroscopy, Auger electron spectroscopy and a combination of the potentiostatic current transient method and optical microscopy. It was found that NO 3 ions can be incorporated into the natural oxide film on pure aluminum at open-circuit potential, but the incorporation of SO2− 4 ions into the film hardly occurs. The incorporation of NO 3 ions lowered the pitting susceptibility of pure aluminum in 0.1 M NaCl solution. Based upon the experimental results, it is suggested that the pitting corrosion inhibition mechanism by anions can be classified into two different groups: inhibition by competitive adsorption of anions (SO2− 4) with Cl ions and inhibition by the incorporation of anions (NO 3) into the film rather than competitive adsorption. Both cases may impede the incorporation of Cl ions into the film, thus inhibiting pitting corrosion of natural oxide film-covered pure aluminum in chloride solutions. Received: 16 October 1998 / Accepted: 6 January 1999  相似文献   

8.
Herein, 2-ethyl phenyl-2,5-dithiohydrazodicarbonamide (2EPDCA) was synthesised and tested as a corrosion inhibitor for mild steel (MS) and copper (Cu) in 1 M HCl and 3.5% NaCl, respectively. Fourier transform infrared spectroscopy (FT-IR) and (NMR) nuclear magnetic resonance (1H, 13C) were used to identify the chemical structure. Both experimental and computational approaches have been conducted to evaluate inhibitor efficiency on both metal systems. The electrochemical results showed that the 2EPDCA inhibition efficiency for MS systems was 95% at 1 × 10?2 M, while in copper systems it was 97.5% at 1 × 10?2 M. The Langmuir adsorption isotherm was fitted using adsorption surface coverage data, and for inhibitor in both systems, the kind of adsorption was mixed (physisorption and chemisorption). Through scanning electron microscopy (SEM), EDX, and atomic force microscopy (AFM) tests, we have confirmed the presence of the inhibitor molecules on the metal surface in both systems. Quantum chemistry simulations indicate that the superior corrosion inhibition efficacy of 2EPDCA on copper compared to mild steel surfaces is attributable to the former's greater electron donating propensity on copper. The adsorption of 2EPDCA molecules on Fe (110) and Cu (111) surfaces was further verified by molecular dynamic simulations, with the former having a greater adsorption energy. The results indicate that the corrosion inhibitor was effective even in harsh conditions, and it can be thought of as a novel corrosion inhibitor for mild steel and copper that provides good protection.  相似文献   

9.
Recently, the hydrolysis of Schiff bases under experimental conditions gives suspicion for their corrosion inhibition performance. The current study employs a stable Schiff base namely, 2,2′-{propane-1,3-diylbis[azanylylidene (E) methanylylidene]}bis(6-methoxyphenol) (LPD) as corrosion inhibitor for mild steel (MS) in 1 M HCl solution. The presence of the characteristic peak of the imine group in UV-visible spectra was taken as an indicator for LPD stability in acidic media. The inhibition action was examined using electrochemical techniques including potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) besides gravimetric measurement. The inhibition efficiency reached 95.93 % for 0.75 mM LPD after 24 h of immersion at 25 °C. This high efficiency is owing to the presence of the characteristic imine group and other heteroatoms and π- electrons of the aromatic benzene rings. The mechanism of inhibition depends on adsorption phenomena on mild steel surface which obeys Langmuir isotherm model. The calculated values of adsorption equilibrium constant (Kads), adsorption free energy ΔGads, adsorption enthalpy ΔHads and adsorption entropy ΔSads indicated spontaneous exothermic adsorption process of both physical and chemical nature. By rising temperature, the inhibition efficiency of LPD was decreased. The calculated activation energy was increased as the concentration of LPD increased. LPD was considered as a mixed-type inhibitor as indicated from PDP measurements. The obtained surface morphology and composition analysis using SEM/EDS, AFM and FTIR techniques ensures the high efficiency of LPD as corrosion inhibitor.  相似文献   

10.
The effect of sodium carboxymethyl cellulose (Na-CMC) on the corrosion behavior of mild steel in 1.0 mol·L−1 HCl solution has been investigated by using weight loss (WL) measurement, potentiodynamic polarization, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS) methods. These results showed that the inhibition efficiency of Na-CMC increased with increasing the inhibitor concentration. Potentiodynamic polarization studies revealed that the Na-CMC was a mixed type inhibitor in 1.0 mol·L−1 HCl. The adsorption of the inhibitor on mild steel surface has been found to obey the Langmuir isotherm. The effect of temperature on the corrosion behavior of mild steel in 1.0 mol·L−1 HCl with addition of 0.04% of Na-CMC has been studied in the temperature range of 298–328 K. The associated apparent activation energy (E*a) of corrosion reaction has been determined. Scanning electron microscopy (SEM) has been applied to investigate the surface morphology of mild steel in the absence and presence of the inhibitor molecules.  相似文献   

11.
The inhibitive action of ethanol extracts from leaves (LV), bark (BK) and roots (RT) of Nauclea latifolia on mild steel corrosion in H2SO4 solutions at 30–60 °C was studied using weight loss and gasometric techniques. The extracts were found to inhibit the corrosion of mild steel in H2SO4 solutions and the inhibition efficiencies of the extracts follow the trend: RT > LV > BK. The inhibition efficiency increased with the extracts concentration but decreased with temperature rise. Physical adsorption of the phytochemical components of the plant on the metal surface is proposed as the mechanism of inhibition. The adsorption characteristics of the inhibitor were approximated by the thermodynamic-kinetic model of El-Awady et al.  相似文献   

12.
Abstract  The effect of sodium benzoate (SB) and sodium 4-(phenylamino)benzenesulfonate (SPABS) on the corrosion behavior of low carbon steel has been investigated using gravimetric method in the temperature range of 30–80 °C, velocity range of 1.44–2.02 m s−1 and concentration range of 6.94 × 10−4 to 4.16 × 10−3 mol dm−3 SB and 3.69 × 10−4 to 2.06 × 10−3 mol dm−3 SPABS. Optimization of temperature, fluid velocity, and inhibitors concentration has been made. The obtained results indicate that the inhibition efficiency (w IE %) at 1.56 m s−1 is not in excess of 81.5% at 4.16 × 10−3 mol dm−3 SB and 84.4% at 2.06 × 10−3 mol dm−3 SPABS. The inhibitive performance of these compounds showed an improvement with increasing concentration up to critical values of SB and SPABS; beyond these concentrations no further effectiveness is observed. These inhibitors retard the anodic dissolution of low carbon steel by protective layer bonding on the metal surface. The adsorption of SB and SPABS on the low carbon steel surface was found to obey the Freundlich isotherm model. The FT-IR spectroscopy was used to analyze the surface adsorbed film. Graphical abstract  Low carbon steel corrosion in presence of sodium benzoate and sodium 4-(phenylamino)benzenesulfonate has been investigated. The adsorption mechanism obeyed Freundlich isotherm model. FT-IR was used to analyze the adsorbed film   相似文献   

13.
The effect of some prepared compounds, namely 3,5-dimethyl-1H-pyrazole (P1), 3(5)-amino-5(3)-methylpyrazole (P2), and 1′,3,5,5′-tetramethyl-1′H-1,3′-bipyrazole (P3), on the corrosion behaviour of steel in 1.0 M hydrochloric acid solution as corrosive medium has been investigated at 308 K using weight-loss measurement, potentiodynamic polarisation, linear polarisation, and impedance spectroscopy (EIS). Generally, inhibition efficiency of the investigated compounds was found to depend on the concentration and nature of the inhibitor. P3 was a better inhibitor than P1 and P2, and its inhibition efficiency increased with increasing concentration of inhibitor, attaining 94% above 10−3  M. Potentiodynamic polarisation studies clearly reveal that P3 acts essentially as a cathodic inhibitor. E (%) values obtained from different methods are in reasonably good agreement. EIS measurements show an increase of transfer resistance with inhibitor concentration. Partial π-charge on atoms was calculated. Correlation between the highest occupied molecular orbital energy E HOMO and inhibition efficiencies was sought. The temperature effect on the corrosion behaviour of steel in 1.0 M HCl without and with different concentrations of inhibitor P3 was studied in the temperature range 308 to 343 K. Thermodynamic data, for example heat of adsorption ( \Updelta H\textads° \Updelta H_{\text{ads}}^{^\circ } ), entropy of adsorption ( \Updelta S\textads° \Updelta S_{\text{ads}}^{^\circ } ) and free energy of adsorption ( \Updelta G\textads° \Updelta G_{\text{ads}}^{^\circ } ) were calculated by use of thermodynamic equations. Kinetic activation data, for example E a, ΔH*, ΔS* and pre-exponential factor, were calculated, and are discussed. The inhibiting action of P3 on the corrosion of steel in 1–10 M hydrochloric acid was also studied by weight-loss measurement. The rate constant and reaction constant were calculated for the corrosion reactions. Adsorption of P3 on the steel surface in 1.0 M HCl follows the Langmuir isotherm model.  相似文献   

14.
The inhibition efficiency of 2-Pyrrolidin-1-yl-1,3-thiazole-5-carboxylic acid (PTCA) against mild steel (MS) corrosion was investigated in acidic solution by using quantum chemical calculations based on Density Functional Theory (DFT) method and electrochemical measurements. The electrochemical impedance spectroscopy (EIS), potentiodynamic, potential zero charge (pzc) analysis and electrochemical noise (EN) measurements at various concentrations (from 0.1 to 10 mM) and immersion times were utilized in experimental part. The surface analysis was achieved scanning electron microscope (SEM) and contact angle measurements in the absence and presence of 10 mM PTCA. According to DFT results, PTCA exhibited 3.737 eV band gap and 8.130 Debye dipole moment which were a signal of potentially convenient corrosion inhibitor properties. PTCA has a remarkable corrosion inhibition capability to mild steel, which inhibited both anodic and cathodic corrosion rates, relying on it's physically adsorption on the metal solution interface and protection ability was increased with increasing PTCA concentration. The obtained adsorption equilibrium constant was 11.11 × 103 M-1 and calculated standard free energy of adsorption was ?33.03 kJ mol?1. The determined activation energy values were 55.58 kJ mol?1 and 96.86 kJ mol?1 in 0.5 M HCl in the absence and presence of 10 mM PTCA, respectively. PTCA demonstrated a strong inhibition efficiency of 98.3%, after 168 h immersion, according to the EIS results. As a consequently, we recommend that PTCA is a convenient inhibitor in 0.1 M HCl for mild steel protection against corrosion.  相似文献   

15.
Cyclic voltammetric, potentiodynamic anodic polarization and current–time transient studies were carried out on mild steel in circulating cooling water containing Cl and SO4−2 ions under the effect of different variables such as coolant flow, the availability of oxygen, cooling system temperature, and cooling system pH. The anodic excursion span of mild steel in cooling corrosive solution was characterized by the occurrence of a well-defined anodic peak (A1), while the reverse sweep was characterized by the appearance of two cathodic peaks (C1 and C2). The presence of Cl and SO4−2 ions in cooling water enhance the active dissolution of mild steel and tend to breakdown the passive film and induce pitting attack. The data reveal that increasing flow rate and temperature of cooling solution enhances the anodic peak current density (j A1) and shifts the pitting potential (E pit) towards more active values. It is seen that the peak current density of the anodic peak A1 increases and the pitting potential (E pit) displaced in the noble direction in the aerated solution compared that in de-aerated solution. The pitting corrosion of mild steel by Cl and SO4−2 ions initiates more readily in acidic medium (pH 2.0). It was found that the incubation time (t i) increase and in turn the pitting corrosion decrease in the order: pH 10 > pH 6.8 > pH 2.0.  相似文献   

16.

Abstract  

The effect of sodium benzoate (SB) and sodium 4-(phenylamino)benzenesulfonate (SPABS) on the corrosion behavior of low carbon steel has been investigated using gravimetric method in the temperature range of 30–80 °C, velocity range of 1.44–2.02 m s−1 and concentration range of 6.94 × 10−4 to 4.16 × 10−3 mol dm−3 SB and 3.69 × 10−4 to 2.06 × 10−3 mol dm−3 SPABS. Optimization of temperature, fluid velocity, and inhibitors concentration has been made. The obtained results indicate that the inhibition efficiency (w IE %) at 1.56 m s−1 is not in excess of 81.5% at 4.16 × 10−3 mol dm−3 SB and 84.4% at 2.06 × 10−3 mol dm−3 SPABS. The inhibitive performance of these compounds showed an improvement with increasing concentration up to critical values of SB and SPABS; beyond these concentrations no further effectiveness is observed. These inhibitors retard the anodic dissolution of low carbon steel by protective layer bonding on the metal surface. The adsorption of SB and SPABS on the low carbon steel surface was found to obey the Freundlich isotherm model. The FT-IR spectroscopy was used to analyze the surface adsorbed film.  相似文献   

17.
The inhibition of the corrosion of mild steel in hydrochloric acid solution by the seed extract of Karanj (Pongamia pinnata) has been studied using weight loss, electrochemical impedance spectroscopy, potentiodynamic polarization, and linear polarization techniques. Inhibition was found to increase with increasing concentration of the extract. The effect of temperature, immersion time, and acid concentration on the corrosion behavior of mild steel in 1 M HCl with addition of extract was also studied. The adsorption of the extract on the mild steel surface obeyed the Langmuir adsorption isotherm. Values of inhibition efficiency calculated from weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy are in good agreement. Polarization curves showed that Karanj (P. pinnata) seed extract behaves as a mixed-type inhibitor in hydrochloric acid. The activation energy as well as other thermodynamic parameters for the inhibition process was calculated. The adsorbed film on mild steel surface containing Karanj (P. pinnata) seed extract inhibitor was also measured by Fourier transform infrared spectroscopy. The results obtained showed that the seed extract of Karanj (P. pinnata) could serve as an effective inhibitor of the corrosion of mild steel in hydrochloric acid media.  相似文献   

18.
The adsorption and inhibition effect of xanthione (XION) on mild steel in 0.5 M H2SO4 at 303–333 K were studied using gravimetric and UV–visible spectrophotometric methods. The results obtained show that XION acts as an effective corrosion inhibitor for mild steel in sulphuric acid and inhibition efficiency reaches 98.0% at a very low inhibitor concentration of 10 μM. Inhibition efficiency was found to increase with increase in XION concentration but decreased with temperature suggesting physical adsorption mechanism. Arrhenius law and its transition equation lead to estimate the activation parameters of the corrosion process. XION inhibits the corrosion of mild steel effectively at moderate temperature and adsorbs according to the Langmuir isotherm. Thermodynamic parameters governing the adsorption process have been calculated and discussed. The UV–visible absorption spectra of the solution containing the inhibitor after the immersion of mild steel specimen indicate the formation of a XEN–Fe complex. Attempt to correlate the molecular structure to quantum chemical indices was made using density functional theory (DFT).  相似文献   

19.
The inhibition of mild steel corrosion in aerated acid mixture of 0.5 N H2SO4 and 0.5 N HCl solution was investigated using potentiodynamic polarization studies, linear polarization studies, electrochemical impedance spectroscopy, adsorption, and surface morphological studies. The effect of inhibitor concentration on corrosion rate, degree of surface coverage, adsorption kinetics, and surface morphology is investigated. The inhibition efficiency increased markedly with increase in additive concentration. The presence of PEG and PVP decreases the double-layer capacitance and increases the charge-transfer resistance. The inhibitor molecules first adsorb on the metal surface following a Langmuir adsorption isotherm. Both PEG and PVP offer good inhibition properties for mild steel and act as mixed-type inhibitors. Surface analysis by scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows that PVP offers better protection than PEG.  相似文献   

20.
《印度化学会志》2023,100(1):100834
Corrosion of metals is a serious industrial problem due to its impact on economic losses and irresistible structural damage. In this work, dibenzalacetone derivatives 1, 5-bis (2-nitrophenyl)-1, 4- pentadien -3-one (BPDO) are employed as controlling agents on mild steel in 1 M H2SO4. The effect of BPDO on reducing corrosion of mild steel was analyzed using electrochemical and non-electrochemical methods. From experimental results, it is proved that the protection efficiency increases with enhance in BPDO concentration and diminishes with enlarge in temperature. BPDO is an effective corrosion inhibitor with a 98.64% inhibition efficiency at only 300 ppm concentration. IE diminishes as exposure time increases due to a decrease in the stability of the adsorbed BPDO on the metal surface. The results of Tafel polarization measurements revealed that BPDO acts as a mixed type inhibitor. In both the polarization and Electrochemical Impedance tests, 308K and 300 ppm of BPDO were used, yielding maximal inhibition efficiencies of 98.41% and 97.57% respectively. Langmuir adsorption isotherm is found to be the most suitable way to explain the adsorption of BPDO on the surface of mild steel. Physisorption is proposed from the values of ΔGads. Formation of a protective layer on mild steel surface was affirmed by various spectroscopic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号