首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experimental results of studying low-frequency (74 kHz) shear elasticity of polymer liquids by the impedance method (analogous to the Mason method) are presented. A free-volume thick liquid layer is placed on the horizontal surface of a piezoelectric quartz crystal with dimensions 34.7 × 12 × 5.5 cm. The latter performs tangential vibrations at resonance frequency. The liquid layer experiences shear strain, and shear waves should propagate in it. From the theory of the method, it follows that, with an increase in the layer thickness, both real and imaginary resonance frequency shifts should exhibit damped oscillations and tend to limiting values. For the liquids under study, the imaginary frequency shift far exceeds the real one, which testifies to the presence of bulk shear elasticity.  相似文献   

2.
An experimental study of the shear parameters of viscoelastic liquids is carried out by the acoustic resonance method based on the changes in the natural frequency and Q factor of a piezoelectric quartz resonator. The liquid to be studied is placed between a stationary quartz strap and the piezoelectric quartz crystal vibrating at the resonance frequency. For a set of drilling muds, the values of the real and imaginary shear moduli are obtained at a frequency of 74 kHz. The measurements are performed with a liquid layer thickness much smaller than the shear wavelength. It is shown that the shear modulus decreases with increasing strain amplitude. A cluster model based on the Isakovich-Chaban nonlocal diffusion theory is proposed for explaining the low-frequency viscoelastic relaxation process.  相似文献   

3.
颜细平  彭政  何菲菲  蒋亦民 《物理学报》2016,65(12):124501-124501
利用能以极慢变形率直接剪切颗粒固体的实验装置,测量了(玻璃珠)样品对大幅度循环剪切的力-位移曲线,以及一个循环周期后的塑性位移残留.发现随着循环频率的降低,样品会从有限塑性残留的弹塑行为转变到几乎没有塑性的纯弹性行为,同时伴随有率相关性.该转变在剪切力幅度高达样品破坏值的90%时依然存在,但需要极小的变形率(10~(-5)Hz)或惯性数(10~(-8)).这意味着无论是高频小幅度的声波扰动,还是极低频大幅度的直接剪切,静态颗粒固体都可做出纯弹性的力学响应.在足够慢的状态变化范围里,它仍是属于经典弹性理论范畴的一类材料.这个弹性区域一直未被报道和关注,可能是观测它时需要样品的变形率远比通常此类研究中所采用的慢变形还要小许多(大约两个数量级)的缘故.理论上本文测量结果支持描述颗粒固体宏观动力学的基本方程组,不能只有弹塑和率无关行为,它们必须在极慢变形极限下退化为经典弹性理论,并且在这个转变过程中表现出率相关特性.  相似文献   

4.
The paper presents the theory of shear wave propagation in a “soft solid” material possessing anisotropy of elastic and dissipative properties. The theory is developed mainly for understanding the nature of the low-frequency acoustic characteristics of skeletal muscles, which carry important diagnostic information on the functional state of muscles and their pathologies. It is shown that the shear elasticity of muscles is determined by two independent moduli. The dissipative properties are determined by the fourth-rank viscosity tensor, which also has two independent components. The propagation velocity and attenuation of shear waves in muscle depend on the relative orientation of three vectors: the wave vector, the polarization vector, and the direction of muscle fiber. For one of the many experiments where attention was distinctly focused on the vector character of the wave process, it was possible to make a comparison with the theory, estimate the elasticity moduli, and obtain agreement with the angular dependence of the wave propagation velocity predicted by the theory.  相似文献   

5.
6.
The visco-elastic properties of liquids have been investigated using acoustical resonance method. Piezoquatrz performed tangential oscillations on the main resonance frequency of 74 kHz contacts by the one end of horizontal surface with the studied liquid layer covered by quartz cover-plate. So the stagnant shear waves are installed in layer. The solution of interaction of piezoquartz-liquid layer-cover-plate gives three methods of determination of the real shear modulus (G) and the tangent of mechanical loss angle (tan theta) of liquid. The first method is realized at smaller thickness of liquid layer then the length of shear wave. Liquids of different classes have been studied using this method: polymer liquids, oils, glycols and alcohols. The second method is connected with the propagation of shear wave in liquid layer, parameters of which are determined the G and tan theta. And the third method is based on the determination of limit shift of resonance frequencies at completes damping of shear wave in thick layer of liquid. All these three methods give satisfactory agreement of results.  相似文献   

7.
The method and results of measuring the shear elastic modulus of a rubberlike polymer by the deformation of a plane elastic layer are described. For shear deformations not exceeding 0.5 of the layer thickness, the shear modulus is constant and its value is in agreement with the value determined by pressing a rigid ball against the polymer layer. For deformations exceeding 0.5 of the layer thickness, the stress-strain dependence becomes nonlinear. The coefficient of shear viscosity is determined from the shear wave form generated by focused ultrasound in a homogeneous polymer sample.  相似文献   

8.
Molecular dynamics simulations of linear C78H158 were conducted to investigate the dynamics of individual chains under shear. The distribution of the end-to-end vector exhibited Gaussian behavior at low shear rates; however, it displayed a bimodal form at high shear rates as rotational motion of the individual chains effectively lowered the vector's magnitude. Correlations between the components of the end-to-end vector revealed multiple time scales associated with the fluid response: the Rouse time, and several that were associated with the deformation and rotational dynamics of the fluid.  相似文献   

9.
A two-dimensional Yukawa liquid is studied using two different nonequilibrium molecular dynamics simulation methods. Shear viscosity values in the limit of small shear rates are reported for a wide range of Coulomb coupling parameter and screening lengths. At high shear rates it is demonstrated that this liquid exhibits shear thinning; i.e., the viscosity eta diminishes with increasing shear rate. It is expected that two-dimensional dusty plasmas will exhibit this effect.  相似文献   

10.
Large step shear experiments revealed through particle tracking velocimetry that entangled polymeric liquids display either internal macroscopic movements upon shear cessation or rupturelike behavior during shear. Visible inhomogeneous motions were detected in five samples with the number of entanglements per chain ranging from 20 to 130 at amplitudes of step strain as low as 135%.  相似文献   

11.
12.
13.
A rheological law based on the concept of cooperatively sheared flow zones is presented, in which the effective thermodynamic state variable controlling flow is identified to be the isoconfigurational shear modulus of the liquid. The law captures Newtonian as well as non-Newtonian viscosity data for glass-forming metallic liquids over a broad range of fragility. Acoustic measurements on specimens deformed at a constant strain rate correlate well with the measured steady-state viscosities, hence verifying that viscosity has a unique functional relationship with the isoconfigurational shear modulus.  相似文献   

14.
The propagation speed of shear waves is related to frequency and the complex stiffness (shear elasticity and viscosity) of the medium. A method is presented to solve for shear elasticity and viscosity of a homogeneous medium by measuring shear wave speed dispersion. Harmonic radiation force, introduced by modulating the energy density of incident ultrasound, is used to generate cylindrical shear waves of various frequencies in a homogeneous medium. The speed of shear waves is measured from phase shift detected over the distance propagated. Measurements of shear wave speed at multiple frequencies are fit with the theoretical model to solve for the complex stiffness of the medium. Experiments in gelatin phantoms show promising results validated by an independent method. Practical considerations and challenges in possible medical applications are discussed.  相似文献   

15.
The elastic constants of the molecular crystal adamantane (C10H16) have been measured at 10 MHz as a function of temperature in the cubic plastic phase, with special attention given to the region just above the order-disorder transition into the tetragonal rigid phase. Both the velocity and attenuation of the C′ shear wave exhibit incipient critical behavior near this transition. The C′ stiffness also shows a pretransitional softening when this transition is approached by increasing the pressure along several isotherms.  相似文献   

16.
Conclusions Thin layers of polar liquids on the surface of a solid possess shear elasticity, which indicates the presence of the degree of order in their structure. With the increase of temperature, the frequency shift, due to breakdown of the degree of order, decreases and at the temperature of about 70° it is not observed.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 112–114, February, 1973.  相似文献   

17.
18.
We numerically study the phase structure of two types of triangulated spherical surface models, which includes an in-plane shear energy in the Hamiltonian, and we found that the phase structure of the models is considerably influenced by the presence of the in-plane shear elasticity. The models undergo a first-order collapsing transition and a first-order (or second-order) transition of surface fluctuations; the latter transition was reported to be of second-order in the first model without the in-plane shear energy. This leads us to conclude that the in-plane elasticity strengthens the transition of surface fluctuations. We also found that the in-plane elasticity decreases the variety of phases in the second model without the in-plane energy. The Hamiltonian of the first model is given by a linear combination of the Gaussian bond potential, a one-dimensional bending energy, and the in-plane shear energy. The second model is obtained from the first model by replacing the Gaussian bond potential with the Nambu-Goto potential, which is defined by the summation over the area of triangles.  相似文献   

19.
20.
S.C. Pradhan 《Physics letters. A》2009,373(45):4182-4188
Higher order shear deformation theory (HSDT) is reformulated using the nonlocal differential constitutive relations of Eringen. The equations of motion of the nonlocal theories are derived. The developed equations of motion have been applied to study buckling characteristics of nanoplates such as graphene sheets. Navier's approach has been used to solve the governing equations for all edges simply supported boundary conditions. Analytical solutions for critical buckling loads of the graphene sheets are presented. Nonlocal elasticity theories are employed to bring out the small scale effect on the critical buckling load of graphene sheets. Effects of (i) nonlocal parameter, (ii) length, (iii) thickness of the graphene sheets and (iv) higher order shear deformation theory on the critical buckling load have been investigated. The theoretical development as well as numerical solutions presented herein should serve as reference for nonlocal theories as applied to the stability analysis of nanoplates and nanoshells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号