首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李志文  岂云开  顾建军  孙会元 《物理学报》2012,61(13):137501-137501
采用直流磁控反应共溅法制备了非磁性元素Al和磁性元素Co掺杂的ZnO薄膜, 样品原位真空退火后再空气退火处理. 利用X射线衍射仪(XRD) 和物理性能测量仪(PPMS) 对薄膜的结构和磁性进行了表征. XRD和PPMS结果表明, 不同的退火氛围对掺杂薄膜的结构和磁性有着很大的影响. 真空退火的Al掺杂ZnO薄膜没有观察到铁磁性, 而空气退火的样品却显示出明显的室温铁磁性, 铁磁性的来源与空气退火后导致Al和ZnO基体间电荷转移增强有关. 而对于Co掺杂ZnO薄膜, 真空退火后再空气退火, 室温铁磁性明显减弱. 其磁性变化与Co离子和ZnO基体间电荷转移导致磁性增强和间隙Co原子被氧化导致磁性减弱有关.  相似文献   

2.
Magnetic oxide semiconductors, for example the highly transparent and intrinsically n-type conducting zinc oxide doped with the 3d transition metal Co (ZnO:Co), are promising for the emerging field of spintronics [1]. We investigated n-conducting ZnO:Co thin films with a Co content of nominal 0.02, 0.20, or 2.00 at. %. The substitution of Co cations in the tetrahedral sites of wurtzite ZnO with Zn was confirmed at low temperature by the 1.877 eV photoluminescence between crystal field split d-levels of Co2+ (d7) ions. Based on theoretical studies, it is predicted that the formation of electron levels with zinc interstitials (IZn) or hole levels with zinc vacancies (VZn) is necessary to induce ferromagnetism, whereas the formation of electron levels with oxygen vacancies (VO) is detrimental for ferromagnetism in ZnO:Co [2]. Cobalt generates a hole level in ZnO [3]. We investigated the generation of electron levels in n-conducting ZnO:Co in dependence on the Co content by means of deep level transient spectroscopy (DLTS). However, because of the ambiguous categorization of deep defects in n-conducting ZnO (VO, IZn), an optimization of defect-related ferromagnetism in ZnO:Co is not possible at the moment. PACS 78.30.Fs; 91.60.Ed; 91.60.Mk  相似文献   

3.
We report the use of targeted p- and n-type chemical perturbations to manipulate high-T(C) ferromagnetism in Mn(2+):ZnO and Co(2+):ZnO in predictable and reproducible ways. We demonstrate a clear correlation between nitrogen and high-T(C) ferromagnetism for Mn(2+):ZnO and an inverse correlation for Co(2+):ZnO, both as predicted by recent theoretical models. These chemical perturbations reveal rich possibilities for exerting external control over high-T(C) spin ordering in diluted magnetic semiconductors.  相似文献   

4.
The ferromagnetism in highly transparent and intrinsically n-type conducting zinc oxide doped with 3d transition metals (TM), is predicted to be defect mediated. We investigate the generation of deep defects in n-conducting 1 μm thick ZnO:TM films (TM=Co, Mn, Ti) with a nominal TM content of 0.02, 0.20 and 2.00 at.% grown by pulsed laser deposition on a-plane sapphire substrates using deep level transient spectroscopy. We find that a defect level is generated, independent of the TM content, located 0.31 and 0.27 eV below the conduction band minimum of ZnO:Mn and ZnO:Ti, respectively. Different defect levels are generated in dependence on the Co content in ZnO:Co. This work shows that an optimization of defect-related ferromagnetism in n-conducting ZnO:TM thin films will only be possible if the preparation sensitive formation of deep defects is controlled in the same time.  相似文献   

5.
Ni-doped ZnO samples with ferromagnetism at room temperature have been prepared by solid state reaction. It is found that the ferromagnetism originates from the nanosized Ni clusters formed from the decomposition of NiO during calcination. The magnetic properties can be explained by the microstructure of sparsely distributed, randomly oriented and magnetically saturated Ni clusters. Experiments show that the addition of Cu ions will block the decomposition of NiO because Cu2+ is more likely reduced to Cu+. Hall effect confirms the absence of exchange coupling between local spins and charge carriers.  相似文献   

6.
于宙  李祥  龙雪  程兴旺  刘颖  曹传宝 《中国物理 B》2009,18(7):3040-3043
This paper reports that a chemical method is employed to synthesize Co and Al co-doped ZnO,namely,Zn0.99 x Co0.01 Al x O dilution semiconductors with the nominal composition of x = 0,0.005 and 0.02.Structural,magnetic and optical properties of the produced samples are studied.The results indicate that samples sintered in air under the temperatures of 500 C show a single wurtzite ZnO structure and the ferromagnetism decreases with the increase of Al.Photoluminescence spectra of different Al-doped samples indicate that increasing Al concentration in Zn0.99 x Co0.01 Al x O results in a decrease of Zn i,which resembles the trend of the ferromagnetic property of the corresponding samples.Therefore,it is deduced that the ferromagnetism observed in the studied samples originates from the interstitial defect of zinc(Zni) in the lattice of Co-doped ZnO.  相似文献   

7.
This paper reports that the(Ga,Co)-codoped ZnO thin films have been grown by inductively coupled plasma enhanced physical vapour deposition.Room-temperature ferromagnetism is observed for the as-grown thin films.The x-ray absorption fine structure characterization reveals that Co 2+ and Ga 3+ ions substitute for Zn 2+ ions in the ZnO lattice and exclude the possibility of extrinsic ferromagnetism origin.The ferromagnetic(Ga,Co)-codoped ZnO thin films exhibit carrier concentration dependent anomalous Hall effect and positive magnetoresistance at room temperature.The mechanism of anomalous Hall effect and magneto-transport in ferromagnetic ZnO-based diluted magnetic semiconductors is discussed.  相似文献   

8.
We have used oxygen plasma assisted metal organic chemical vapor deposition along with wet chemical synthesis and spin coating to prepare CoxZn1-xO and MnxZn1-xO epitaxial and nanoparticle films. Co(II) and Mn(II) substitute for Zn(II) in the wurtzite lattice in materials synthesized by both methods. Room-temperature ferromagnetism in epitaxial Co:ZnO films can be reversibly activated by diffusing in Zn, which occupies interstitial sites and makes the material n-type. O-capped Co:ZnO nanoparticles, which are paramagnetic as grown, become ferromagnetic upon being spin coated in air at elevated temperature. Likewise, spin-coated N-capped Mn:ZnO nanoparticle films also exhibit room-temperature ferromagnetism. However, the inverse systems, N-capped Co:ZnO and O-capped Mn:ZnO, are entirely paramagnetic when spin coated into films in the same way. Analysis of optical absorption spectra reveals that the resonances Co(I)↔Co(II)+e- CB and Mn(III)↔Mn(II)+h+ VB are energetically favorable, consistent with strong hybridization of Co (Mn) with the conduction (valence) band of ZnO. In contrast, the resonances Mn(I)↔Mn(II)+e- CB and Co(III)↔Co(II)+h+ VB are not energetically favorable. These results strongly suggest that the observed ferromagnetism in Co:ZnO (Mn:ZnO) is mediated by electrons (holes). PACS 75.50.Pp  相似文献   

9.
Co-doped ZnO diluted magnetic semiconductor films were prepared on Si(100) substrates by magnetron sputtering system and the Co content varies from 0.01 to 0.15. The X-ray diffraction results showed ZnO of the wurtzite structure. The ferromagnetism was observed at room temperature. The X-ray near-edge absorption spectroscopy revealed that Co substitutes for Zn2+ ions in the valence of +2 state in the Co-doped ZnO films.  相似文献   

10.
We report on the magnetic properties of thoroughly characterized Zn(1-x)Co(x)O epitaxial thin films, with low Co concentration, x = 0.003-0.005. Magnetic and EPR measurements, combined with crystal field theory, reveal that isolated Co2+ ions in ZnO possess a strong single ion anisotropy which leads to an "easy plane" ferromagnetic state when the ferromagnetic Co-Co interaction is considered. We suggest that the peculiarities of the magnetization process of this state can be viewed as a signature of intrinsic ferromagnetism in ZnO:Co materials.  相似文献   

11.
利用磁控溅射法,采用亚分子分层掺杂技术交替溅射Co靶和ZnO靶,在Si衬底上制备了不同氢氩流量比的H:ZCO薄膜样品,研究了氢氩流量比对薄膜结构特性和磁学性能的影响。所制备的薄膜样品具有c轴择优取向。由于H对表面和界面处悬挂键的钝化作用,随H2流量比的增加,薄膜的择优取向变差。磁性测量结果显示,薄膜样品的铁磁性随着氢氩流量比的增大而增强。XPS结果表明,随着H含量的增大,金属态Co团簇的相对含量逐渐增加,而氧化态Co离子的相对含量逐渐减小。H:ZCO样品中的铁磁性可能来源于Co金属团簇,H的掺入促使ZnO中的Co离子还原成Co金属团簇,从而增强了薄膜样品的室温铁磁性。  相似文献   

12.
This work investigates cobalt doped ZnO nanoparticles prepared by using wet chemical methods. The nanoparticles have a typical size of 3–8 nm. The electronic structure as well as the optical and magnetic properties of Co2+ have been characterized. X-ray diffraction spectra of the powder show wurtzite ZnO with no secondary Co phases. In the energy range below the bandgap, the optical absorption spectra show the internal d–d transitions related to Co2+ incorporated on the Zn lattice site in ZnO. Low temperature photoluminescence measurements confirm these results. Based on the analysis of the g-valuesfor bulk ZnO:Co., electron paramagnetic resonance measurements coincide with the simulation of Co-doped ZnO powder. Thus far, no evidence for ferromagnetism has been obtained. PACS 61.46.Df; 76.30.Fc; 78.67.Bf  相似文献   

13.
程兴旺  李祥  高院玲  于宙  龙雪  刘颖 《物理学报》2009,58(3):2018-2022
采用溶胶-凝胶法制备出具有室温铁磁性的Co掺杂的ZnO稀磁半导体材料. 通过对样品的结构、磁性和发光特性的研究发现,样品具有室温铁磁性,并发现其铁磁性源于磁性离子对ZnO中Zn离子的取代. 对不同温度制备的样品的磁性以及其发光特性的变化研究发现,样品的铁磁性与样品中锌间隙位(Zni)缺陷的密度有关. 关键词: ZnO 稀磁半导体 铁磁性  相似文献   

14.
The introduction of ferromagnetic order in ZnO results in a transparent piezoelectric ferromagnet and further expands its already wide range of applications into the emerging field of spintronics. Through an analysis of density functional calculations we determine the nature of magnetic interactions for transition metals doped ZnO and develop a physical picture based on hybridization, superexchange, and double exchange that captures chemical trends. We identify a crucial role of defects in the observed weak and preparation sensitive ferromagnetism in ZnO:Mn and ZnO:Co. We predict and explain co-doping of Li and Zn interstitials to both yield ferromagnetism in ZnO:Co, in contrast with earlier insights, and verify it experimentally.  相似文献   

15.
钴掺杂氧化锌是室温稀磁半导体的重要候选材料,其磁学特性和钴掺杂浓度、显微结构及光学性质密切相关。磁控溅射具有成本低、易于大面积沉积高质量薄膜等特点,是广受关注的稀磁半导体薄膜制备方法。利用磁控溅射方法制备了不同浓度的钴掺杂氧化锌薄膜,并对其显微结构、光学性质和磁学特性进行了系统分析。结果表明:当掺杂原子分数在8%以内时,钴掺杂氧化锌薄膜保持单一的铅锌矿晶体结构,钴元素完全溶解在氧化锌晶格之中;薄膜在可见光区域有很高的透射率,但在567, 615和659 nm处有明显吸收峰,这些吸收峰源于Co2+处于O2-形成的四面体晶体场中的特征d-d跃迁。磁学特性测试结果表明钴掺杂氧化锌薄膜具有室温铁磁性,且钴的掺杂浓度对薄膜的磁学特性有重要影响。结合薄膜结构、光学和电学性质分析,实验中观察到的室温铁磁性应源于钴掺杂氧化锌薄膜的本征属性,其铁磁耦合机理可由束缚磁极化子模型进行解释。  相似文献   

16.
A series of Mn-doped ZnO films have been prepared in different sputtering plasmas by using the inductively coupled plasma enhanced physical vapour deposition. The films show paramagnetic behaviour when they are deposited in an argon plasma. The Hall measurement indicates that ferromagnetism cannot be realized by increasing the electron concentration. However, the room-temperature ferromagnetism is obtained when the films are deposited in a mixed argon-nitrogen plasma. The first-principles calculations reveal that antiferromagnetic ordering is favoured in the case of the substitution of Mn^2+ for Zn^2+ without additional acceptor doping. The substitution of N for O (NO^-) is necessary to induce ferromagnetic couplings in the Zn-Mn-O system. The hybridization between N 2p and Mn 3d provides an empty orbit around the Fermi level. The hopping of Mn 3d electrons through the empty orbit can induce the ferromagnetic coupling. The ferromagnetism in the N-doped Zn-Mn-O system possibly originates from the charge transfer between Mn^2+ and Mn^3+ via NO^-, The key factor is the empty orbit provided by substituting N for O, rather than the conductivity type or the carrier concentration.  相似文献   

17.
X-ray photoemission spectroscopy measurements were performed on thin-film samples of rutile Ti(1-x)Co(x)O(2-delta) to reveal the electronic structure. The Co 2p core-level spectra indicate that the Co ions take the high-spin Co2+ configuration, consistent with substitution on the Ti site. The high-spin state and the shift due to the exchange splitting of the conduction band suggest strong hybridization between carriers in the Ti 3d t(2g) band and the t(2g) states of the high-spin Co+2 . These observations support the argument that room temperature ferromagnetism in Ti(1-x)Co(x)O(2-delta) is intrinsic.  相似文献   

18.
路忠林  邹文琴  徐明祥  张凤鸣 《中国物理 B》2010,19(5):56101-056101
This paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on $a$-plane sapphire substrates by using molecular-beam epitaxy. The as-grown films show high resistivity and non-ferromagnetism at room temperature, while they become good conductive and ferromagnetic after annealing in the reducing atmosphere either in the presence or absence of Zn vapour. The x-ray absorption studies indicate that all Co ions in these samples actually substituted into the ZnO lattice without formatting any detectable secondary phase. Compared with weak ferromagnetism (0.16~$\mu _{\rm B}$/Co$^{2 + })$ in the Zn6110M, 7550P, 7280E, 7870Dhttp://cpb.iphy.ac.cn/CN/10.1088/1674-1056/19/5/056101https://cpb.iphy.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=111756Co-doped ZnO, diluted magnetic semiconductors, x-ray absorption fine structure, single crystalline thin filmsProject partially supported by National Science Foundation of China (Grant No.~10804017), National Science Foundation of Jiangsu Province of China (Grant No.~BK2007118), Research Fund for the Doctoral Program of Higher Education of China (Grant No.~20070286037), Cyanine-Project Foundation of Jiangsu Province of China (Grant No.~1107020060), Foundation for Climax Talents Plan in Six-Big Fields of Jiangsu Province of China (Grant No.~1107020070) and New Century Excellent Talents in University (NCET-05-0452).This paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on $a$-plane sapphire substrates by using molecular-beam epitaxy. The as-grown films show high resistivity and non-ferromagnetism at room temperature, while they become good conductive and ferromagnetic after annealing in the reducing atmosphere either in the presence or absence of Zn vapour. The x-ray absorption studies indicate that all Co ions in these samples actually substituted into the ZnO lattice without formatting any detectable secondary phase. Compared with weak ferromagnetism (0.16~$\mu _{\rm B}$/Co$^{2 + })$ in the Zn$_{0.95}$Co$_{0.05}$O single crystalline film with reducing annealing in the absence of Zn vapour, the films annealed in the reducing atmosphere with Zn vapour are found to have much stronger ferromagnetism (0.65~$\mu _{\rm B}$/Co$^{2 + })$ at room temperature. This experimental studies clearly indicate that Zn interstitials are more effective than oxygen vacancies to activate the high-temperature ferromagnetism in Co-doped ZnO films, and the corresponding ferromagnetic mechanism is discussed.Co-doped;ZnO;diluted;magnetic;semiconductors;x-ray;absorption;fine;structure;single;crystalline;thin;filmsThis paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on a-plane sapphire substrates by using molecular-beam epitaxy.The as-grown films show high resistivity and non-ferromagnetism at room temperature,while they become more conductive and ferromagnetic after annealing in the reducing atmosphere either in the presence or absence of Zn vapour.The x-ray absorption studies indicate that all Co ions in these samples actually substituted into the ZnO lattice without formatting any detectable secondary phase.Compared with weak ferromagnetism(0.16 μB/Co2+) in the Zn0.95Co0.05O single crystalline film with reducing annealing in the absence of Zn vapour,the films annealed in the reducing atmosphere with Zn vapour are found to have much stronger ferromagnetism(0.65 μB/Co2+) at room temperature.This experimental studies clearly indicate that Zn interstitials are more effective than oxygen vacancies to activate the high-temperature ferromagnetism in Co-doped ZnO films,and the corresponding ferromagnetic mechanism is discussed.  相似文献   

19.
采用共沉淀(co-precipitation)法制备了Mg掺杂ZnO纳米晶,分别用X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)、紫外可见吸收(UV-Vis)光谱、光致发光(PL)光谱、透射电镜(TEM)、电子顺磁共振(EPR)等分析手段对样品进行了表征。探究了Mg离子在ZnO纳米晶中的存在状态,ZnO纳米晶颗粒尺寸和发射光谱随Mg掺杂浓度的变化,并对其发光机理进行了分析。结果表明:Mg离子在ZnO晶格中以部分晶格位,部分间隙位的方式存在,没有形成MgO表面壳层结构;随Mg掺杂浓度的增大,ZnO纳米晶的颗粒尺寸变小,发射光的光强增大。发射光的最佳激发波长为342nm,中心波长为500nm,荧光量子产率为22.8%。实验分析表明:Mg离子的掺杂在ZnO纳米晶中引入了锌空位(VZn),间隙位的镁离子(IMg),提供了新的复合中心,从而增强了ZnO纳米晶的光致发光。  相似文献   

20.
Co与Cu掺杂ZnO薄膜的制备与光致发光研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用溶胶-凝胶旋涂法在玻璃衬底上制备了Co, Cu单掺杂及Co,Cu共掺杂ZnO薄膜.用金相显微镜观察了Co与Cu掺杂对ZnO薄膜形貌的影响.X射线衍射(XRD)研究揭示所有ZnO薄膜样品都存在(002)择优取向,在Cu单掺的ZnO薄膜中晶粒尺寸最大.对所有样品的室温光致发光测量都观察到较强的蓝光双峰发射和较弱的绿光发射,其中长波长的蓝光峰和绿光峰都能够通过掺杂进行控制.对不同掺杂源的ZnO薄膜发光性能进行了分析,认为蓝光峰来源于电子由导带底到锌空位能级的跃迁及锌填隙到价带顶的跃迁,绿光峰是由于掺杂造成的 关键词: ZnO薄膜 溶胶-凝胶 Co Cu掺杂 光致发光  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号