首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a detailed study of the electron emission from a thin MgO(100) film on a Mo substrate, bombarded with slow He+, Ne+, and Ar+ ions. Neither the high absolute number of emitted electrons per incoming ion nor the electron spectra can be due to Auger neutralization of the incoming ions at the MgO surface alone. Therefore, an additional mechanism is proposed: holes created in the MgO film are transported to the MgO-substrate interface where they give rise to an Auger neutralization process involving two electrons from the metal substrate conduction band.  相似文献   

2.
We present an experimental and theoretical study of triply charged hydrogen bromide ions formed by photoionization of the inner 3d shell of Br. The experimental results, obtained by detecting the 3d photoelectron in coincidence with the two subsequent Auger electrons, are analyzed using calculated potential energy curves of HBr3+. The competition between the short-range chemical binding potential and the Coulomb repulsion in the dissociative process is shown. Two different mechanisms are observed for double Auger decay: one, a direct process with simultaneous ejection of two Auger electrons to final HBr3+ ionic states and the other, a cascade process involving double Auger decay characterized by the autoionization of Br*+ ion subsequent to the HBr2+ fragmentation.  相似文献   

3.
We report energy distributions of electrons emitted from Al surfaces under impact by 1 keV Ar+ and 1-5 keV Ne+ ions. The variation of the energy distributions with the angle of incidence is different for both ions and provides information on the mechanism responsible for electron emission. For Ar+ electron emission results mainly from Auger neutralization, while for Ne+ an important emission mechanism is the decay of plasmon excitations. We find a transition between surface and bulk plasmon excitations as the energy of the ion is increased.  相似文献   

4.
We report on emission processes induced by particle-solid interaction involving ions with a large potential (i.e., high ion charge state) and low kinetic energy. After an introduction into existing neutralization models for ion scattering at a metal surface a detailed discussion on the electron emission processes is presented.The number of electrons emitted per incident ion is shown to be proportional to the potential energy only within a restricted parameter field involving charge state and ion velocity. The kinetic energy distribution of emitted electrons is dominated by low-energetic electrons (30 eV), while inner shell holes of the projectile ion can initiate high-energetic characteristic Auger electrons. The presence of inner shell holes is also of importance for the charge state of highly charged ions being scattered at surfaces whereas normally the charge state distribution of scattered ions depends on the impact parameter only.The influence of the primary ion charge state on the sputtering yield of insulating surfaces is seen for the charge state of sputtered particles, whereas the total sputtering yield seems to be insensitive. This question is still subject to controversy, however.Photon emission dependent on the charge state of the impinging ion has been observed up to now only for extremely highly charged ions as hydrogenlike Ar or Kr.  相似文献   

5.
Low-energy electrons have a particularly important role in many of the techniques of surface science. In some experiments, such as low-energy electron diffraction and characteristic loss spectroscopy, they are scattered either elastically or inelastically; in others, such as electron-stimulated desorption, they are used to produce excitations of the surface; and in still others, the resident electrons are excited to energies where they may escape from the material, as in photoemission, Auger, and ion neutralization spectroscopy. The reason for this central role is that, of all the physical probes, the electron is the simplest one that interacts strongly enough to be sensitive to the last few layers of atoms.  相似文献   

6.
From a quantum mechanical calculation where the populations of He ground and first excited states are properly taken into account, we can identify for the first time the neutralization to the He first excited state as an operative mechanism in He+-Al surface collisions. This identification allows us to understand the presence of high energy electrons in the ion induced electron emission spectra, through the inclusion of Auger deexcitation as an electron emission source, as well as to suggest a possible cause for the disagreement still found between theory and experiments in low energy ion scattering (LEIS) for this system.  相似文献   

7.
The neutralization of He+ ions with energies in the range 10-500 eV at an adsorbed xenon layer is examined both by analyzing the energy distribution of electrons ejected from the surface and by use of spin-labeling techniques, specifically the use of electron-spin-polarized He+ ions coupled with measurement of the ejected electron polarization. The data indicate that neutralization proceeds via an Auger process similar to that which occurs at a clean high-work-function metal surface. At the higher ion energies, however, kinetic ejection becomes important and provides an increasing contribution to the total electron yield.  相似文献   

8.
Ar+ induced Auger electrons from Si and Ar were investigated at bombardment energies between 3–15 keV and target currents of a few μA. The Auger electron yields were compared with secondary ion yields of Si and Ar by simultaneous SIMS-AES measurements. In the ion induced Auger spectra of Si five Auger peaks and in the Ar spectra three Auger peaks were observed. The ion induced Auger electron yield of Si and Ar were found to be strongly dependent upon the primary ion energy. “Bulk like” and “atomic like” Auger transitions of ion induced Auger electrons of Si were observed.  相似文献   

9.
We report on the first spin-resolved energy spectra for the emission of electrons during grazing scattering of 150 keV multicharged nitrogen ions from a magnetized Fe(001) surface. A substantial spin polarization for KLL Auger electrons emitted in the final stage of the neutralization sequence during the interaction of multicharged ions with a metal surface is observed. We conclude from our data that the projectile L shell is dominantly populated by electrons from the conduction band of the target. For low energy electrons we find an increase of their spin polarization with an increase of the projectile charge.  相似文献   

10.
The interaction of large Xe clusters with a soft x-ray laser pulse having a wavelength of 13.9 nm and an intensity of up to 2x10(10) W/cm2 was investigated using a time-of-flight ion mass spectrometer. The corresponding laser photon energy was sufficiently high to photoionize Xe 4d innershell electrons. It was found that Xe3+ ions (which result from double Auger decay of 4d vacancies) became the dominant final ionic product with increasing cluster size and x-ray intensity. This is in contrast to the results of synchrotron radiation experiments involving free Xe atoms, in which Xe2+ is the dominant resultant ion species. Possible mechanisms responsible for the enhancement of the double Auger transition probability in x-ray laser and cluster interaction are discussed.  相似文献   

11.
Calculations of the kinetic energy distributions of electrons ejected from plane metal surfaces by Auger neutralization of slow monoatomic ions are reported. A many body theory is used that includes both the band structure of the target material and the Fermi singular response of metal electrons (to the sudden neutralization of the projectile). Application is made to experiments of electron emission from polycrystalline Al by Ar+-ions, at varying incident energies and angles. Adjustment of the broadening parameters of the distribution of shake-up electrons leads to excellent agreement between the theory and the measurements.  相似文献   

12.
Ultrathin MgO films were grown on a W(1 1 0) substrate while metastable impact electron (MIES) and photoelectron (UPS) spectra were measured in situ; apart from the valence band emission, no additional spectral features were detected. The oxide surface was exposed to metal atoms (Cu, Pd) at RT. A comparison with the DOS extracted from first-principles DFT calculations shows that the metal-induced intensity developing above the top of the O 2p valence band in the UP spectra under Cu(Pd) exposure is caused by Cu 3d (Pd 4d) emission. The emission seen in the MIES spectra is attributed to the ionization of Cu 3d and 4s states of adsorbed neutral Cu atoms in an Auger process, Auger neutralization, involving two electrons from the surface, at least one of them from the metal adsorbate. The shape of the MIES spectra suggests metallic island growth even at the lowest studied exposures, which is supported by the first-principles calculations.  相似文献   

13.
W. Soszka 《Surface science》1978,74(3):636-643
The energy spectra of secondary elections emitted from a Si(111) surface due to bombardment by 6 keV He+ and O+2 ions have been examined. The fine structure in the spectra is explained on the basis of a novel mechanism of creation of Auger electrons at the surface. There are two stages of interaction between incoming ions and the substrate via adsorbed atoms. In the first stage, due to a level promotion mechanism, vacancies in the adsorbed atoms are created. In the second stage, Auger neutralization processes accompanied by the emission of electrons from a solid with characteristic energies take place. These electrons provide a good indication of the degree of coverage of the silicon surface with contaminant atoms. The energy losses of escaping electrons are also discussed.  相似文献   

14.
Two Auger electrons, one very slow, one fast, have been detected in coincidence following near threshold 4d photoionization of the Xe atom. The distribution in the energy the two electrons share has been measured for the first time revealing the presence of post-collision interaction effects that provide unique information on the decay dynamics of the 4d hole. Analysis of the distorted line shapes indicates that the dominant process is decay of Xe+(4d(-1)) to Xe3+ through cascade emission of a zero kinetic energy Auger electron followed by a fast Auger electron. The widths of the intermediate Xe2+* states are estimated to be about 60 meV.  相似文献   

15.
《Surface science》1986,173(1):245-263
The investigation and development of tribologically important transition metal nitride surface layers rely on the accurate quantitative analysis of light elements used in conjunction with a suitable depth profiling technique. This paper describes the quantitative AES analysis of iron nitrides (γ′-Fe4N and ϵ-Fe2−3N) by comparison with reference materials and by applying correction factors for ionization by backscattered primary electrons, atom number density and inelastic mean free paths of the Auger electrons in the matrix. It is shown that the nitrogen contents of these iron nitrides may be determined to within 10% accuracy, and it is also shown that this accuracy depends firstly on the correct calculation of the abovementioned correction factors, and secondly on the correct determination of the Auger electron yield. The Auger electron yield should be determined by measuring the area below the Auger peak on the N(E)E spectrum, after removal of the background electron spectrum to ensure that details of the relatively small nitrogen peaks are not overlooked.  相似文献   

16.
The methodology of characterizing electronic structure in dielectric materials will be presented in detail. Energy distribution of the electrons emitted from dielectric materials by the Auger neutralization of ions is measured and rescaled for Auger self-convolution, which is restructured from the energy distribution of the emitted electrons. The Fourier transform is very effective for obtaining the density of states from the Auger self-convolution. The MgO layer is tested as an example of this new measurement scheme. The density of states in the valence band of the MgO layer is studied by measuring the energy distribution of the emitted electrons for MgO crystal with three different orientations of (111), (100) and (110). The characteristic energy of ?0 corresponding to the peak density of the states in the band is determined, showing that the (111) orientation has a shallow characteristic energy ?0 = 7.4 eV, whereas the (110) orientation has a deep characteristic energy ?0 = 9.6 eV, consistent with the observed coefficient γ of the secondary electron emission for MgO crystal. Electronic structure in new functional nano-films spayed over MgO layer is also characterized. It is therefore demonstrated that secondary electron emission by the Auger neutralization of ions is highly instrumental for the determination of the density of states in the valence band of dielectric materials. This method simultaneously determines the valence band structure and the coefficient γ of the secondary electron emission, which plays the most important role in the electrical breakdown phenomena.  相似文献   

17.
The ion fraction P+ is measured for He+ ions scattered by 129 degrees from a Cu surface. Both the primary energy and the angles of incidence and of exit are varied. From our results we conclude the following: along the incoming and outgoing trajectories, neutralization is due to Auger processes and depends on the normal velocity component v( perpendicular ) only. At higher energies, additional charge exchange is due to collision induced neutralization and reionization, both depending on the total ion energy only. Also in this regime P+ depends on v( perpendicular ), but via a two-valued function of the scattering geometry at fixed energy.  相似文献   

18.
The ion fractions η+ of low energy (5–10 keV) neon particles scattered from a Cu(100) surface are measured with a time of flight spectrometer. These fractions are obtained for neutral as well as charged projectiles and for different crystal directions. The scattering angle θ was 30°. For a primary energy E0 of 5 keV neutral projectiles have a value for η+ which is 30 times lower than for charged projectiles; these values are 0.15 and 4.5% respectively. For E0 = 10 keV the values of η+ are about the same (~22%). Energy differences up to 22 eV, depending on E0, are observed between the single scattering peaks in the ion spectra of charged and neutral projectiles but also between the single scattering peak in the spectra of all scattered particles and of ions, with ions as projectiles. A qualitative discussion of these data is given, involving charge transfer processes of noble gas particle and target atom. The data suggest that these neutralization processes can be described more adequately with interatomic neutralization processes along the trajectory than with Auger neutralization by conduction electrons.  相似文献   

19.
We have observed the direct L(2,3)MMM double Auger transition after photoionization of the 2p shell of argon by angle-resolved electron-electron coincidence spectroscopy. The process is responsible for about 20% of the observed Auger electron intensity. In contrast to the normal Auger lines, the spectra in double Auger decay show a continuous intensity distribution. The energy and angular distributions of the emitted electrons allow one to obtain information on the electron correlations giving rise to the double Auger process as well as the symmetry of the associated two-electron continuum state.  相似文献   

20.
Neutralization of He+ ions in grazing incidence scattering on Ag(111) and Ag(110) surfaces is studied. These measurements reveal the existence of an order of magnitude difference in the probability of ion survival on Ag(110) and Ag(111). The experimental results are discussed in terms of survival from Auger neutralization, whose rates are derived theoretically. Molecular dynamics simulation of scattered ion trajectories is performed and the surviving ion fractions are then calculated using the theoretical Auger neutralization rates, without adjustable parameters. The calculations agree quite well with the experimental data and show that the observed differences in the neutralization probabilities on these surfaces are related to different extensions of the electron density beyond the surface, resulting from different atomic packing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号