首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We report the observation of dynamo action in the von Kármán sodium experiment, i.e., the generation of a magnetic field by a strongly turbulent swirling flow of liquid sodium. Both mean and fluctuating parts of the field are studied. The dynamo threshold corresponds to a magnetic Reynolds number R(m) approximately 30. A mean magnetic field of the order of 40 G is observed 30% above threshold at the flow lateral boundary. The rms fluctuations are larger than the corresponding mean value for two of the components. The scaling of the mean square magnetic field is compared to a prediction previously made for high Reynolds number flows.  相似文献   

3.
We study the effect of a turbulent flow of liquid sodium generated in the von Kármán geometry, on the localized field of a magnet placed close to the frontier of the flow. We observe that the field can be transported by the flow on distances larger than its integral length scale. In the most turbulent configurations, the mean value of the field advected at large distance vanishes. However, the rms value of the fluctuations increases linearly with the magnetic Reynolds number. The advected field is strongly intermittent.  相似文献   

4.
Amplification of magnetic field due to kinematic turbulent dynamo action is studied in the regime of small magnetic Prandtl numbers. Such a regime is relevant for planets and stars interiors, as well as for liquid-metal laboratory experiments. A comprehensive analysis based on the Kazantsev-Kraichnan model is reported, which establishes the dynamo threshold and the dynamo growth rates for varying kinetic helicity of turbulent fluctuations. It is proposed that in contrast with the case of large magnetic Prandtl numbers, the kinematic dynamo action at small magnetic Prandtl numbers is significantly affected by kinetic helicity, and it can be made quite efficient with an appropriate choice of the helicity spectrum.  相似文献   

5.
We develop a new nonlinear mean field dynamo theory that couples field growth to the time evolution of the magnetic helicity and the turbulent electromotive force, E. We show that the difference between kinetic and current helicities emerges naturally as the growth driver when the time derivative of E is coupled into the theory. The solutions predict significant field growth in a kinematic phase and a saturation rate/strength that is magnetic Reynolds number dependent/independent in agreement with numerical simulations. The amplitude of early time oscillations provides a diagnostic for the closure.  相似文献   

6.
We report direct numerical simulations of dynamo generation for flow generated using a Taylor-Green forcing. We find that the bifurcation is subcritical and show its bifurcation diagram. We connect the associated hysteretic behavior with hydrodynamics changes induced by the action of the Lorentz force. We show the geometry of the dynamo magnetic field and discuss how the dynamo transition can be induced when an external field is applied to the flow.  相似文献   

7.
In this paper,based on the mean field dynamo theory,the influence of the electromagnetic boundary condition on the dynamo actions driven by the small scale turbulent flows in a cylindrical vessel is investigated by the integral equation approach.The numerical results show that the increase of the electrical conductivity or magnetic permeability of the walls of the cylindrical vessel can reduce the critical magnetic Reynolds number.Furthermore,the critical magnetic Reynolds number is more sensitive to the varying electrical conductivity of the end wall or magnetic permeability of the side wall.For the anisotropic dynamo which is the mean field model of the Karlsruhe experiment,when the relative electrical conductivity of the side wall or the relative magnetic permeability of the end wall is less than some critical value,the m=1(m is the azimuthal wave number)magnetic mode is the dominant mode,otherwise the m=0 mode predominates the excited magnetic field.Therefore,by changing the material of the walls of the cylindrical vessel,one can select the magnetic mode excited by the anisotropic dynamo.  相似文献   

8.
We present a three-pronged numerical approach to the dynamo problem at low magnetic Prandtl numbers P(M). The difficulty of resolving a large range of scales is circumvented by combining direct numerical simulations, a Lagrangian-averaged model and large-eddy simulations. The flow is generated by the Taylor-Green forcing; it combines a well defined structure at large scales and turbulent fluctuations at small scales. Our main findings are (i) dynamos are observed from P(M)=1 down to P(M)=10(-2), (ii) the critical magnetic Reynolds number increases sharply with P(M)(-1) as turbulence sets in and then it saturates, and (iii) in the linear growth phase, unstable magnetic modes move to smaller scales as P(M) is decreased. Then the dynamo grows at large scales and modifies the turbulent velocity fluctuations.  相似文献   

9.
We provide a theory of dynamo (alpha effect) and momentum transport in three-dimensional magnetohydrodynamics. For the first time, we show that the alpha effect is reduced by the shear even in the absence of magnetic field. The alpha effect is further suppressed by magnetic fields well below equipartition (with the large-scale flow) with different scalings depending on the relative strength of shear and magnetic field. The turbulent viscosity is also found to be significantly reduced by shear and magnetic fields, with positive value. These results suggest a crucial effect of shear and magnetic field on dynamo quenching and momentum transport reduction, with important implications for laboratory and astrophysical plasmas, in particular, for the dynamics of the Sun.  相似文献   

10.
We study the growth rate and saturation level of the turbulent dynamo in magnetohydrodynamical simulations of turbulence, driven with solenoidal (divergence-free) or compressive (curl-free) forcing. For models with Mach numbers ranging from 0.02 to 20, we find significantly different magnetic field geometries, amplification rates, and saturation levels, decreasing strongly at the transition from subsonic to supersonic flows, due to the development of shocks. Both extreme types of turbulent forcing drive the dynamo, but solenoidal forcing is more efficient, because it produces more vorticity.  相似文献   

11.
We present numerical simulations of a turbulent magnetic dynamo mimicking closely the Riga-dynamo experiment at Re approximately 3.5x10(6) and 15< or =Rem< or =20. The Reynolds-averaged Navier-Stokes equations for the fluid flow and turbulence field are solved simultaneously with the direct numerical solution of the magnetic field equations. The fully integrated two-way-coupled simulations reproduced all features of the magnetic self-excitation detected by the Riga experiment, with frequencies and amplitudes of the self-generated magnetic field in good agreement with the experimental records, and provided full insight into the unsteady magnetic and velocity fields and the mechanisms of the dynamo action.  相似文献   

12.
The magnetic field induced by the nonstationary screw flow of gallium in a toroidal channel has been investigated experimentally using a gallium prototype of the sodium apparatus developed in the frame of the experimental dynamo program at the Institute of Continuous Media Mechanics, Perm, Russia. The experimental set-up is a rapidly rotating toroidal channel subjected to abrupt braking. The screw flow is initiated by inertial forces pushing liquid gallium through diverters. The regular structure of the induced magnetic field is generated about 0.1 s after the stop of the channel and persists up to 1 s. The induced field is measured by sensors placed outside the channel. The inductive effects observed are attributed to the mean screw flow. The decay laws of the induced regular magnetic field and turbulent magnetic fluctuations are studied.Received: 27 August 2004, Published online: 5 November 2004PACS: 47.65. + a Magnetohydrodynamics and electrohydrodynamics - 07.55.Dd Generation of magnetic fields  相似文献   

13.
The dynamo equations are solved numerically with a helical forcing corresponding to the Roberts flow. In the fully turbulent regime the flow behaves as a Roberts flow on long time scales, plus turbulent fluctuations at short time scales. The dynamo onset is controlled by the long time scales of the flow, in agreement with the former Karlsruhe experimental results. The dynamo mechanism is governed by a generalized α effect, which includes both the usual α effect and turbulent diffusion, plus all higher order effects. Beyond the onset we find that this generalized α effect scales as O(Rm(-1)), suggesting the takeover of small-scale dynamo action. This is confirmed by simulations in which dynamo occurs even if the large-scale field is artificially suppressed.  相似文献   

14.
The VKS experiment studies dynamo action in the flow generated inside a cylinder filled with liquid sodium by the rotation of coaxial impellers (the von Kármán geometry). We report observations related to the self-generation of a stationary dynamo when the flow forcing is symmetric, i.e. when the impellers rotate in opposite directions at equal angular velocities. The bifurcation is found to be supercritical, with a neutral mode whose geometry is predominantly axisymmetric. We then report the different dynamical dynamo regimes observed when the flow forcing is asymmetric, including magnetic field reversals. We finally show that these dynamics display characteristic features of low dimensional dynamical systems despite the high degree of turbulence in the flow. To cite this article: VKS Collaboration, C. R. Physique 9 (2008).  相似文献   

15.
The generation of large-scale magnetic fields is generically accompanied by the more rapid growth of small-scale fields. The growing Lorentz force due to these fields backreacts on the turbulence to saturate the mean-field and small-scale dynamos. For the mean-field dynamo, in a quasilinear treatment of this saturation, it is generally thought that, while the alpha effect gets renormalized and suppressed by nonlinear effects, the turbulent diffusion is left unchanged. We show here that this is not true and the effect of the Lorentz forces is also to generate additional nonlinear hyperdiffusion of the mean field. A combination of such nonlinear hyperdiffusion with diffusion at small scales also arises in a similar treatment of small-scale dynamos, and is crucial to understand its saturation.  相似文献   

16.
We consider the problem of incompressible, forced, nonhelical, homogeneous, and isotropic MHD turbulence with no mean magnetic field and large magnetic Prandtl number. This type of MHD turbulence is the end state of the turbulent dynamo, which generates folded fields with small-scale direction reversals. We propose a model in which saturation is achieved as a result of the velocity statistics becoming anisotropic with respect to the local direction of the magnetic folds. The model combines the effects of weakened stretching and quasi-two-dimensional mixing and produces magnetic-energy spectra in remarkable agreement with numerical results at least in the case of a one-scale flow. We conjecture that the statistics seen in numerical simulations could be explained as a superposition of these folded fields and Alfvén-like waves that propagate along the folds.  相似文献   

17.
In the von Kármán Sodium 2 (VKS2) successful dynamo experiment of September 2006, the observed magnetic field showed a strong axisymmetric component, implying that nonaxisymmetric components of the flow field were acting. By modeling the induction effect of the spiraling flow between the blades of the impellers in a kinematic dynamo code, we find that the axisymmetric magnetic mode is excited. The control parameters are the magnetic Reynolds number of the mean flow, the coefficient measuring the induction effect alpha, and the type of boundary conditions. We show that using realistic values of alpha, the observed critical magnetic Reynolds number, Rm;{c} approximately 32, can be reached easily with ferromagnetic boundary conditions. We conjecture that the dynamo action achieved in this experiment may not be related to the turbulence in the bulk of the flow, but rather to the alpha effect induced by the impellers.  相似文献   

18.
In this paper, a new set of the evolution equations for the helicity of the mean magnetic field and the mean helicity of the fluctuating magnetic field is derived from the Maxwell equations and the generalized Ohm's law with the dynamo action. It is shown that there exist two kinds of the dynamo-driven magnetic helicity transport. One of them makes the mean magnetic field helicity transfer to the fluctuating magnetic field, yielding an anomalous loop voltage. The other makes the fluctuating magnetic field helicity transfer to the mean magnetic field, which provides a convincing evidence for the existence of the dynamo current. Therefore, the two kinds of the magnetic helicity transport describe the mutual conversion between the regular and irregular motions. The formulas of the loop voltage and the dynamo current are given. In particular, we give out the formula of the dynamo current-generated equilibrium magnetic field which provides a concrete mode of the magnetic field creation and maintenance in both astrophysical and laboratory (e.g., reversed-field pinch) plasmas.  相似文献   

19.
We consider the influence of fluctuations in a screw flow of a conducting liquid on the effect of magnetic field self-excitation; the solution of this problem is important for experimental realization of a turbulent dynamo. We propose a theoretical approach based on the solution of averaged equations obtained in the limit of a short correlation time. The applicability of this approach is confirmed by direct numerical simulation of the initial equations. We demonstrate the influence of the correlation of fluctuations on the dynamo effect threshold. It is shown that the solution of the mean-field equations differs from the solution based on direct numerical simulation for a finite correlation time. The advantages and disadvantages of the two approaches are estimates, as well as the importance of the discovered difference in the context of problems of magnetic field self-excitation. The influence of helicity and intermittency on the type of the solution is considered.  相似文献   

20.
We report the observation of several dynamical regimes of the magnetic field generated by a turbulent flow of liquid sodium (VKS experiment). Stationary dynamos, transitions to relaxation cycles or to intermittent bursts, and random field reversals occur in a fairly small range of parameters. Large scale dynamics of the magnetic field result from the interactions of a few modes. The low dimensional nature of these dynamics is not smeared out by the very strong turbulent fluctuations of the flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号