共查询到20条相似文献,搜索用时 15 毫秒
1.
通过构造具有棋盘状微结构的疏水表面,考虑表面张力的影响,利用定常与非定常结合的数值模拟方法,研究了疏水表面在湍流状态下的减阻特性以及微结构内气体封存的效果,其中Re=3000—30000.在低雷诺数下,疏水表面微结构内气体封存状态良好,减阻率最高约为30%;随着雷诺数的增大,压差阻力增大,减阻率有下降趋势.当来流速度过大时,水会大量进入微结构,疏水表面的减阻率变化剧烈,且已经不再减阻.结果表明,表面张力削弱了壁面切应力的影响,使得低雷诺数下微结构内气体能够有效封存,进而减小壁面阻力. 相似文献
2.
Fabrication of a superhydrophobic surface on a wood substrate 总被引:2,自引:0,他引:2
Shuliang WangJunyou Shi Changyu LiuCheng Xie Chengyu Wang 《Applied Surface Science》2011,257(22):9362-9365
A layer of lamellar superhydrophobic coating was fabricated on a wood surface through a wet chemical process. The superhydrophobic property of the wood surface was measured by contact angle (CA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). An analytical characterization revealed that the microscale roughness of the lamellar particles was uniformly distributed on the wood surface and that a zinc stearate monolayer (with the hydrophobic groups oriented outward) formed on the ZnO surface as the result of the reaction between stearic acid and ZnO. This process transformed the wood surface from hydrophilic to superhydrophobic: the water contact angle of the surface was 151°, and the sliding angle was less than 5°. 相似文献
3.
Nucleation and growth on a superhydrophobic grooved surface 总被引:1,自引:0,他引:1
The growth dynamics of water drops condensed on a superhydrophobic geometrically patterned surface were studied. Drop size evolution at early and intermediate times is self-similar. Drop growth laws do not differ for a flat surface because of a reduction of both drop and substrate dimensionality. A striking observation is the instantaneous drying of the top surface of grooves at a point in time due to coalescence of the drops with a completely filled channel. At late times, only a few large drops grow connected to the channels, in a mixed Wenzel-penetration regime. 相似文献
4.
The rebound behaviors of droplets impacting on a self-fabricated superhydrophobic brass surface (WCA=164.5°) were observed and studied by using high-speed-camera. In accordance with energy conversion, theoretical analysis of different behaviors and rebound mechanism were given. At lower velocities, three behaviors in different velocity ranges were observed: partial rebounding, entire rebounding and ejecting during rebounding. At higher velocities, such two behaviors as rebound after splashing and rebound, ejecting after splashing, occurred alternately and exhibited certain periodicity. A function to predict the critical impact velocity is derived from energy conservation condition, and the prediction values tally with the experimental values, with the maximum relative error about 14%. 相似文献
5.
The Cassie and Baxter’s equation has been modified to predict wetting phenomena on a microline patterned surface with the concept of effective solid-liquid interfacial energy. This interfacial energy was deduced from the total energy barrier at a metastable equilibrium and Helmholtz free energy. The contact angle predicted by the modified equation is reasonably close to the experimental data for the microline patterned surface. 相似文献
6.
Abstract
Consistent droplet bouncing driven by AC electrowetting was achieved by introducing a superhydrophobic surface instead of conventional hydrophobic surfaces. A superhydrophobic surface is very effective to reduce interfacial energy barrier or adhesion, allowing complete detachment of a droplet from the substrate. While a fixed electric potential (100 Vrms) was applied, the shape deformation and the droplet bouncing were significantly influenced by the frequency of the AC electrowetting. Consistent droplet bouncing only occurred at very narrow frequency ranges (e.g., 30–31 Hz for 8 μL droplets), indicating that resonance dominates the droplet bouncing. Interestingly, the resonance was 1/2 sub-harmonics, where every other actuation was skipped, when the droplet was in the air. Theoretical evaluation of the resonant frequency based on the linear theory implies that the fundamental resonance between the AC electrowetting and the vertical vibration of the shape oscillation could be important to produce consistent droplet bouncing. 相似文献7.
利用高速摄影技术对超疏水表面液滴振动的动态行为进行观测,研究液滴在不同频率下的振动特性. 实验发现,液滴的共振频率满足Rayleigh方程,微液滴在超疏水表面具有自由液滴的振动性质. 在80–200 Hz的驱动频率范围内,接触线出现了明显的固着-移动现象,液滴的振动频率是驱动频率的一半,液滴振动时的形变较大. 当驱动频率大于200 Hz时,接触线基本固着,液滴的振动频率近似等于驱动频率,液滴共振时的形态边缘始终有节点存在. 分析表明,液滴对外界驱动的不同响应与接触线的振荡行为和变形程度密切相关
关键词:
超疏水表面
受迫振动
共振
接触线 相似文献
8.
Abstract
This paper reveals three patterns of bouncing behaviors of suspension drops containing calcium carbonate (CaCO3) powder on a superhydrophobic surface with the aid of a high-speed camera. In transmission electron microscopy (TEM) observation, the particles of CaCO3 are shaped like sticks whose equivalent diameters are about 700 nm. Unlike a pure water drop, dense suspension drops cannot be pinched off at the bounce on the superhydrophobic surface due to a high effective viscosity, whereas the equilibrium contact angle appears to be almost identical in all kinds of droplets. 相似文献9.
Shuliang WangChangyu Liu Guochao LiuMing Zhang Jian LiChengyu Wang 《Applied Surface Science》2011,258(2):806-810
The superhydrophobic wood surface was fabricated via a sol-gel process followed by a fluorination treatment of 1H, 1H, 2H, 2H- perfluoroalkyltriethoxysilanes (POTS) reagent. The crystallization type of silica nanoparticles on wood surface was characterized using X-ray diffraction (XRD), the microstructure and chemical composition of the superhydrophobic wood surface were described by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the bonding force between the silica nanoparticles and POTS reagent was analyzed by Fourier transform infrared spectroscopy (FT-IR) and the superhydrophobic property of the treated sample was measured by contact angle (CA) measurements. An analytical characterization revealed that nanoscale silica spheres stacked uniformly over the wood surface, and with the combination of the high surface roughness of silica nanoparticles and the low surface free energy film of POTS on wood surface, the wood surface has turned its wetting property from hydrophilic into superhydrophobic with a water contact angle of 164° and sliding angle less than 3°. 相似文献
10.
Dong Su Chengya HuangYou Hu Qiangwei JiangLong Zhang Yunfeng Zhu 《Applied Surface Science》2011,258(2):928-934
Sol-gel method is a simple and cheap way to prepare superhydrophobic coatings or films, however, most of the researches on sol-gel focus on silica or ZnO sol-gel. The present paper proposes a novel sol-gel which is made from hydrolysis and condensation of the by-product of polymethylhydrosiloxane (PMHS) reacting with γ-aminopropyltriethoxysilane (KH550). The mechanism of formation of the by-product and the sol-gel is discussed and the by-product is characterized by FT-IR. The mass ratio of KH550/PMHS of the sol-gel influences the water contact angle (WCA) and water sliding angle (WSA) of the film made of spraying the sol-gel to microscope glass. When the mass ratio of KH550/PMHS of the sol-gel reaches 0.25, WCA of the corresponding film is 157° and WSA of it is less than 1°. The mechanism of formation of the sol-gel is discussed, and the size of the sol-gel is characterized by polarization microscope as well. The morphology of the film made of the sol-gel is analyzed by means of scanning electron microscope (SEM). It was found that the diameter of the particle of the superhydrophobic film is about 40 μm, nevertheless, from the larger magnification picture, the particle is found to be composed of micro-balls whose diameter is about 2 μm, and the micro-ball is composed of nano-sphere whose diameter is less than 200 nm. 相似文献
11.
Drag reduction by Leidenfrost vapor layers 总被引:1,自引:0,他引:1
We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies. 相似文献
12.
In Taylor-Couette flow the total energy dissipation rate and therefore the drag can be determined by measuring the torque on the system. We do so for Reynolds numbers between Re=7 x 10(4) and Re=10(6) after having injected (i) small bubbles (R=1 mm) up to a volume concentration of alpha=5% and (ii) buoyant particles (rhop/rhol=0.14) of comparable volume concentration. In case (i) we observe a crossover from little drag reduction at smaller Re to strong drag reduction up to 20% at Re=10(6). In case (ii) we observe at most little drag reduction throughout. Several theoretical models for bubbly drag reduction are discussed in view of our findings. 相似文献
13.
The splash is a phenomenon which happens on droplet impact against a shallow liquid surface (target), forming a structure called crown. After the collapse of the crown, a liquid column (Rayleigh jet) arises on the surface. Splashing has been studied from a great variety of viewpoints, in different fields such as: agronomy, biology, engineering, astronomy, photography and marketing. The visualization of the splash was used, in our case, to study the drag reduction effect that happens when very low concentrations of a high molecular weight polymer is present in the fluid under investigation. 相似文献
14.
Controlled observation of nondegenerate cavity modes in a microdroplet on a superhydrophobic surface
We demonstrate controlled lifting of the azimuthal degeneracy of the whispering gallery modes (WGMs) of single glycerol-water microdroplets standing on a superhydrophobic surface by using a uniform electric field. A good agreement is observed between the measured spectral positions of the nondegenerate WGMs and predictions made for a prolate spheroid. Our results reveal fewer azimuthal modes than expected from an ideal spherical microdroplet due to the truncation by the surface. We use this difference to estimate the contact angles of the microdroplets. 相似文献
15.
The possibility of drag reduction due to compliant coatings of viscoelastic silicone rubbers has been tested experimentally. For this purpose, a series of single-layer coatings of various thicknesses was made of a homogeneous material. The experiments were carried out in a high-speed cavitation tunnel of Pusan National University. Dynamic viscoelastic properties of coating materials were carefully measured. The range of flow rates and coating thicknesses was calculated assuming that the coatings can interact intensively with the dynamic structures of the turbulent boundary layer only in the region of frequencies of their maximum compliance. The predicted range of coating parameters and flow velocities, in which the coatings reduce drag, is compared with experimental data. 相似文献
16.
Leroy F Renaud G Letoublon A Lazzari R Mottet C Goniakowski J 《Physical review letters》2005,95(18):185501
The self-organized growth of Co nanoparticles is achieved at room temperature on an inhomogenously strained Ag(001) surface arising from an underlying square misfit dislocation network of 10 nm periodicity buried at the interface between a 5 nm-thick Ag film and a MgO(001) substrate. This is revealed by in situ grazing-incidence small-angle x-ray scattering. Simulations of the data performed in the distorted wave Born approximation framework demonstrate that the Co clusters grow above the dislocation crossing lines. This is confirmed by molecular dynamic simulations indicating preferential Co adsorption on tensile sites. 相似文献
17.
18.
A stable superhydrophobicity on aluminum alloy has been rendered by a low-cost one-step method, simply immersing the substrates in a solution containing hydrochloric acid and fatty acid molecules. The formation mechanism of such a surface was proposed by SEM morphology and EDS results. The resulting surface shows superhydrophobicity and low adhesion. This low cost and facile process provides a real feasible avenue for large-scale production of superhydrophobic surfaces. 相似文献
19.
We demonstrate, for the first time to our knowledge, Raman lasing from stationary microdroplets on a superhydrophobic surface. In the experiments, glycerol-water microdroplets with radii in the 11-15 microm range were pumped at 532 nm with a pulsed, frequency-doubled Nd:YAG laser. Two distinct operation regimes of the microdroplets were observed: cavity-enhanced Raman scattering and Raman lasing. In the latter case, the Raman lasing signal was higher than the background by more than 30 dB. Investigation of the Raman spectra of various glycerol-water mixtures indicates that lasing occurs within the glycerol Raman band. Raman lasing was not sustained; rather, oscillation would occur in temporally separated bursts. Increasing the rate of convective cooling by nitrogen purging improved the lasing performance and reduced the average interburst separation from 2.3 to 0.4 s. 相似文献
20.
While many recent studies have confirmed the existence of liquid slip over certain solid surfaces, there has not been a deliberate effort to design and fabricate a surface that would maximize the slip under practical conditions. Here, we have engineered a nanostructured superhydrophobic surface that minimizes the liquid-solid contact area so that the liquid flows predominantly over a layer of air. Measured through a cone-and-plate rheometer system, the surface has demonstrated dramatic slip effects: a slip length of approximately 20 microm for water flow and approximately 50 microm for 30 wt % glycerin. The essential geometrical characteristics lie with the nanoposts populated on the surface: tall and slender (i.e., needlelike) profile and submicron periodicity (i.e., pitch). 相似文献