首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
基于一个有效约束识别技术, 给出了具有不等式约束的非线性最优化问题的一个可行SSLE算法. 为获得搜索方向算法的每步迭代只需解两个或三个具有相同系数矩阵的线性方程组. 在一定的条件下, 算法全局收敛到问题的一个KKT点. 没有严格互补条件, 在比强二阶充分条件弱的条件下算法具有超线性收敛速度.  相似文献   

2.
提出了求解非线性不等式约束优化问题的一个可行序列线性方程组算法. 在每次迭代中, 可行下降方向通过求解两个线性方程组产生, 系数矩阵具有较好的稀疏性. 在较为温和的条件下, 算法具有全局收敛性和强收敛性, 数值试验表明算法是有效的.  相似文献   

3.
本文提出一个新的求解非线性不等式约束优化问题的罚函数型序列二次约束二次规划(SQCQP)算法.算法每次迭代只需求解一个凸二次约束二次规划(QCQP)子问题,且通过引入新型积极识别集技术,QCQP子问题的规模显著减小,从而降低计算成本.在不需要函数凸性等较弱假设下,算法具有全局收敛性.初步的数值试验表明算法是稳定有效的.  相似文献   

4.
本文对非线性不等式约束优化问题提出了一个新的可行 QP-free 算法. 新算法保存了现有算法的优点, 并具有以下特性: (1) 算法每次迭代只需求解三个具有相同系数矩阵的线性方程组, 计算量小; (2) 可行下降方向只需通过求解一个线性方程组即可获得, 克服了以往分别求解两个线性方程组获得下降方向和可行方向, 然后再做凸组合的困难;(3) 迭代点均为可行点, 并不要求是严格内点; (4) 算法中采用了试探性线搜索,可以进一步减少计算量; (5) 算法中参数很少,数值试验表明算法具有较好的数值效果和较强的稳定性.  相似文献   

5.
陈风华  李双安 《数学杂志》2015,35(2):429-442
本文研究了非线性互补约束均衡问题.利用互补函数以及光滑近似法,把非线性互补约束均衡问题转化为一个光滑非线性规划问题,得到了超线性收敛速度,数值实验结果表明本文提出的算法是可行的.  相似文献   

6.
本文利用一个新的分片线性NCP函数提出一个新的可行的QP-free方法解非线性不等式约束优化问题.不同于其他的QP-free方法,这个方法只考虑在工作集中的约束函数,工作集是积极集的一个估计,因此子问题的维数不是满秩的.这个方法可行的并且不需假定严格互补条件、聚点的孤立性得到算法的全局收敛性,并且积极约束函数的梯度不要求线性独立的,其中由拟牛顿法得到的子矩阵不需要求一致正定性.  相似文献   

7.
求解凸二次规划问题的势下降内点算法   总被引:11,自引:0,他引:11  
1 引 言二次规划问题的求解是数学规划和工业应用等领域的一个重要课题 ,同时也是解一般非线性规划问题的序列二次规划算法的关键 .求解二次规划问题的早期技术是利用线性规划问题的单纯形方法求解二次规划问题的 KKT最优性必要条件[1 ] .这类算法比较直观 ,但在处理不等式约束时 ,松弛变量的引进很容易导致求解过程的明显减慢 .有效集策略是求解二次规划问题的另一类主要技术 .这类方法一般都是稳定的 ,但随着问题中大量不等式约束的出现 ,其收敛速度将越来越低[2 ] .简约空间技术将所求问题的 Hessian阵投影到自由变量所在的子空间中 …  相似文献   

8.
为了更好地解决二次约束二次规划问题(QCQP), 本文基于分支定界算法框架提出了自适应线性松弛技术, 在理论上证明了这种新的定界技术对于解决(QCQP)是可观的。文中分支操作采用条件二分法便于对矩形进行有效剖分; 通过缩减技术删除不包含全局最优解的部分区域, 以加快算法的收敛速度。最后, 通过数值结果表明提出的算法是有效可行的。  相似文献   

9.
近些年,国内外许多学者针对交通规划提出了诸如用户平衡(UE)、系统最优(SO)等模型,但由于交通网络的复杂性,这些模型的求解相对困难,考虑到在一般的UE、S0模型中,其约束条件为线性约束与非负约束,给出一种求解交通规划模型的新算法,算法不需使用任何线搜索,只要通过求解一个简单的二次规划问题得到下降方向即可,最后,将该算法应用到简单的交通网络中,并通过与相继平均法(MSA)进行比较,验证了该算法的收敛速度较快。  相似文献   

10.
为了更好地解决二次约束二次规划问题(QCQP), 本文基于分支定界算法框架提出了自适应线性松弛技术, 在理论上证明了这种新的定界技术对于解决(QCQP)是可观的。文中分支操作采用条件二分法便于对矩形进行有效剖分; 通过缩减技术删除不包含全局最优解的部分区域, 以加快算法的收敛速度。最后, 通过数值结果表明提出的算法是有效可行的。  相似文献   

11.
In this paper,a smoothing QP-free infeasible method is proposed for nonlinear inequality constrained optimization problems.This iterative method is based on the solution of nonlinear equations which is obtained by the multipliers and the smoothing Fisher-Burmeister function for the KKT first-order optimality conditions.Comparing with other QP-free methods, this method does not request the strict feasibility of iteration.In particular,this method is implementable and globally convergent without assuming the strict complementarity condition and the isolatedness of accumulation points.Furthermore,the gradients of active constraints are not requested to be linearly independent.Preliminary numerical results indicate that this smoothing QP-free infeasible method is quite promising.  相似文献   

12.
A parallel algorithm for constrained concave quadratic global minimization   总被引:2,自引:0,他引:2  
The global minimization of large-scale concave quadratic problems over a bounded polyhedral set using a parallel branch and bound approach is considered. The objective function consists of both a concave part (nonlinear variables) and a strictly linear part, which are coupled by the linear constraints. These large-scale problems are characterized by having the number of linear variables much greater than the number of nonlinear variables. A linear underestimating function to the concave part of the objective is easily constructed and minimized over the feasible domain to get both upper and lower bounds on the global minimum function value. At each minor iteration of the algorithm, the feasible domain is divided into subregions and linear underestimating problems over each subregion are solved in parallel. Branch and bound techniques can then be used to eliminate parts of the feasible domain from consideration and improve the upper and lower bounds. It is shown that the algorithm guarantees that a solution is obtained to within any specified tolerance in a finite number of steps. Computational results are presented for problems with 25 and 50 nonlinear variables and up to 400 linear variables. These results were obtained on a four processor CRAY2 using both sequential and parallel implementations of the algorithm. The average parallel solution time was approximately 15 seconds for problems with 400 linear variables and a relative tolerance of 0.001. For a relative tolerance of 0.1, the average computation time appears to increase only linearly with the number of linear variables.  相似文献   

13.
Abstract. In the paper, a new mixed algorithm combined with schemes of nonmonotone line search, the systems of linear equations for higher order modification and sequential quadratic programming for constrained optimizations is presented. Under some weaker assumptions,without strict complementary condition, the algorithm is globally and superlinearly convergent.  相似文献   

14.
提出了一个处理等式约束优化问题新的SQP算法,该算法通过求解一个增广Lagrange函数的拟Newton方法推导出一个等式约束二次规划子问题,从而获得下降方向.罚因子具有自动调节性,并能避免趋于无穷.为克服Maratos效应采用增广Lagrange函数作为效益函数并结合二阶步校正方法.在适当的条件下,证明算法是全局收敛的,并且具有超线性收敛速度.  相似文献   

15.
A potential reduction algorithm is proposed for optimization of a convex function subject to linear constraints. At each step of the algorithm,a system of linear equations is solved toget a search direction and the Armijo‘s rule is used to determine a stepsize. It is proved that thealgorithm is globally convergent. Computational results are reported.  相似文献   

16.
Received January 5, 1997 / Revised version received November 19, 1997 Published online November 24, 1998  相似文献   

17.
Global convergence properties are established for a quite general form of algorithms for solving nonlinearly constrained minimization problems. A useful feature of the methods considered is that they can be implemented easily either with or without using quadratic programming techniques. A particular implementation, designed to be both efficient and robust, is described in detail. Numerical results are presented and discussed.This work was carried out by the first author under the support of the Science Research Council (UK), Grant Nos. B/RG/95124 and GR/A/44480, which are gratefully acknowledged.  相似文献   

18.
Reduced Hessian methods have been shown to be successful for equality constrained problems. However there are few results on reduced Hessian methods for general constrained problems. In this paper we propose a method for general constrained problems, based on Byrd and Schnabel's basis-independent algorithm. It can be regarded as a smooth extension of the standard reduced Hessian Method.Research supported in part by NSF, AFORS and ONR through NSF grant DMS-8920550.  相似文献   

19.
In this paper, we develop an interior point algorithm for quadratically constrained entropy problems. The algorithm uses a variation of Newton's method to follow a central path trajectory in the interior of the feasible set. The primal-dual gap is made less than a given in at most steps, wheren is the dimension of the problem andm is the number of quadratic inequality constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号