首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high‐yielding exfoliation of graphene at high concentrations in aqueous solutions is critical for both fundamental study and future applications. Herein, we demonstrate the formation of stable aqueous dispersions of pristine graphene by using the surfactant sodium taurodeoxycholate under tip sonication at concentrations of up to 7.1 mg mL?1. TEM showed that about 8 % of the graphene flakes consisted of monolayers and 82 % of the flakes consisted of less than five layers. The dispersions were stable regardless of freezing (?20 °C) or heat treatment (80 °C) for 24 h. The concentration could be significantly improved to about 12 mg mL?1 by vacuum‐evaporation of the dispersions at ambient temperature. The as‐prepared graphene dispersions were readily cast into conductive films and were also processed to prepare Pt/graphene nanocomposites that were used as highly active electrocatalysts for the oxygen‐reduction reaction.  相似文献   

2.
Solvent-exfoliated graphene at extremely high concentration   总被引:1,自引:0,他引:1  
We describe three related methods to disperse graphene in solvents with concentrations from 2 to 63 mg/mL. Simply sonicating graphite in N-methyl-2-pyrrolidinone, followed by centrifugation, gives dispersed graphene at concentrations of up to 2 mg/mL. Filtration of a sonicated but uncentrifuged dispersion gives a partially exfoliated powder that can be redispersed at concentrations of up to 20 mg/mL. However, this process can be significantly improved by removing any unexfolaited graphite from the starting dispersion by centrifugation. The centrifuged dispersion can be filtered to give a powder of exfoliated few-layer graphene. This powder can be redispersed at concentrations of at least 63 mg/mL. The dispersed flakes are ~1 μm long and ~3 to 4 layers thick on average. Although some sedimentation occurs, ~26-28 mg/mL of the dispersed graphene appears to be indefinitely stable.  相似文献   

3.
Modified acrylate polymers are able to effectively exfoliate and stabilize pristine graphene nanosheets in aqueous media. Starting with pre‐exfoliated graphite greatly promotes the exfoliation level. The graphene concentration is significantly increased up to 11 mg mL?1 by vacuum evaporation of the solvent from the dispersions under ambient temperature. TEM shows that 75 % of the flakes have fewer than five layers with about 18 % of the flakes consisting of monolayers. Importantly, a successive centrifugation and redispersion strategy is developed to enable the formation of dispersions with exceptionally high graphene‐to‐stabilizer ratio. Characterization by high‐resolution transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray diffraction, and Raman spectroscopy shows the flakes to be of high quality with very low levels of defects. These dispersions can act as a scaffold for the immobilization of enzymes applied, for example, in glucose oxidation. The electrochemical current density was significantly enhanced to be approximately six times higher than an electrode in the absence of graphene, thus showing potential applications in enzymatic biofuel cells.  相似文献   

4.
Highly stable graphene aqueous dispersions were achieved by chemical reduction of graphene oxide with an environmentally friendly reagent of hexamethylenetetramine (HMTA). By this method, chemical reduction as well as dispersion of graphene can be carried out in one step without the need of organic stabilizers or pH control. The as-synthesized products were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, X-ray diffraction, Raman spectroscopy, atomic force microscopy, scanning and transmission electron microscopy, and thermogravimetry and differential scanning calorimetry. It is revealed that the bulk of the oxygen-containing functional groups were removed from graphene oxide via HMTA reduction, and stable aqueous colloidal dispersions of graphene have a concentration up to ca. 0.65mg/mL. Moreover, it is found that the freshly precipitated graphene nanosheets can be re-dispersed in water with simple ultrasonic treatment. A mechanism for the formation of stable graphene colloidal dispersions is proposed. This simple and green approach should find practical applications in the preparation of graphene-based nanocomposites with a facile and low-cost solution processing technique.  相似文献   

5.
Furaneol is an important aroma compound. It is very difficult to extract furaneol from food matrices and separate it on a gas chromatography column due to its high polarity and instability. A new quantitative method was developed to quantify furaneol in aqueous samples by the use of derivatization/solid phase microextraction (SPME) coupled with gas chromatography/mass spectrometry (GC/MS). The derivatization was carried out by reacting pentafluorobenzyl bromide with furaneol in basic solutions at elevated temperatures. The derivative was stable and less polar so that SPME-GC/MS could be applied for extraction, separation and detection. The automated analytical method had a limit of detection (LOD) of 0.5 ng mL(-1), a limit of quantification (LOQ) of 2 ng mL(-1), a repeatability of 9.5%, and a linear range from 2 to 500 ng mL(-1). The method was applied to analyze fruit samples. And it was found that the concentrations of furaneol in tomato ranged from 95 to 173 μg kg(-1), in strawberries ranged from 1663 to 4852 μg kg(-1). The results were verified with a LC procedure. To facilitate analytical method development, some physico-chemical parameters for furaneol were determined in this work. Its solubility in water was determined as 0.315 g mL(-1) (25°C). Its LogD in water and LogP in 0.1 M phosphate buffer were -0.133 and 0.95 (20 °C), respectively. Its pKa was 8.56 (20 °C).  相似文献   

6.
One of the applications of graphene in which its scalable production is of utmost importance is the development of polymer composites. Among the techniques used to produce graphene flakes, the liquid-phase exfoliation (LPE) of graphite stands out due to its versatility and scalability. However, solvents suitable for the LPE process are generally toxic and have a high boiling point, making the processing challenging. The use of low boiling point solvents could be convenient for the processing, due to the easiness of their removal. In this study, the use of poly(methyl methacrylate) (PMMA) as a stabilizing agent is proposed for the production of graphene flakes in a low boiling point solvent, that is, acetone. The graphene dispersions produced in the mixture acetone-PMMA have higher concentration, +175 %, and contain a higher percentage of few-layer graphene flakes (<5 layers), that is, +60 %, compared to the dispersions prepared in acetone. The as-produced graphene dispersions are used to develop graphene/acrylonitrile-butadiene-styrene composites. The mechanical properties of the pristine polymer are improved, that is, +22 % in the Young's modulus, by adding 0.01 wt. % of graphene flakes. Moreover, a decrease of ≈20 % in the oxygen permeability is obtained by using 0.1 wt. % of graphene flakes filler, compared to the unloaded matrix.  相似文献   

7.
A simple and effective method for the preparation of water dispersible graphene using sulfonated poly(ether-ether-ketone) (SPEEK) has been described. The SPEEK macromolecules are noncovalently adsorbed on the surface of graphene through π-π interactions. The SPEEK-modified graphene (SPG) forms an aqueous dispersion that is stable for more than six months. An analysis of the ultraviolet-visible spectra shows that the aqueous dispersion of SPG obeys Beer's law and the molar extinction coefficient has been found to be 149.03 mL mg(-1) cm(-1). Fourier transform infrared, Raman, and X-ray photoelectron spectroscopy analyses confirm successful reduction and surface modification of graphene. An atomic force microscopy (AFM) analysis reveals the formation of a single layer of functionalized graphene. Transmission electron microscopy results are also in good agreement with the AFM analysis and support the formation of single-layer graphene. SPG shows good electrochemical cyclic stability during cyclic voltammetry and charge/discharge process when used as a supercapacitor electrode. A specific capacitance of 476 F g(-1) at a current density of 6.6 A g(-1) is observed for SPG materials.  相似文献   

8.
Thin‐layer 2D materials have been attracting enormous interest, and various processes have been investigated to obtain these materials efficiently. In view of their practical applications, the most desirable source for the preparation of these thin‐layer materials is the pristine bulk materials with stacked layers, such as pristine graphite. There are many options in terms of conditions for the exfoliation of thin‐layer materials, and these include wet and dry processes, with or without additives, and the kind of solvent. In this context, we found that the versatile exfoliant hexahydroxytriphenylene works efficiently for the exfoliation of typical 2D materials such as graphene, MoS2, and hexagonal boron nitride (h‐BN) by both wet and dry processes by using sonication and ball milling, respectively, in aqueous and organic solvents. As for graphene, stable dispersions with relatively high concentrations (up to 0.28 mg mL?1) in water and tetrahydrofuran were obtained from graphite in the presence of hexahydroxytriphenylene by a wet process with the use of bath sonication and by a dry process involving ball milling. Especially, most of the graphite was exfoliated and dispersed as thin‐layer graphene in both aqueous and organic solvents through ball milling, even on a large scale (47–86 % yield). In addition, the exfoliant was easily removed from the precipitated composite by heat treatment without disturbing the graphene structure. Bulk MoS2 and h‐BN were also exfoliated by both wet and dry processes. Similar to graphene, dispersions of MoS2 and h‐BN of high concentrations in water and DMF were produced in high yields through ball milling.  相似文献   

9.
Continuous real-time monitoring of the nanotube concentration in aqueous solution using UV-Vis spectroscopy allows quantitative comparison of the stability of different types of nanotube dispersions. Systematic investigation of the effects of nanotube length and functionalisation for thin multiwalled carbon nanotubes (MWNT) has revealed that shorter MWNT form more stable dispersions than longer nanotubes of the same diameter. MWNT shortened to an average length of approximately 1 microm form stable dispersions in water with concentrations up to 0.013 mg ml(-1) in the absence of surfactants or solubilising functional groups. The introduction of carboxylic or thiol groups on the surface of shortened nanotubes further increases the stability of MWNT dispersions (up to 0.24 mg ml(-1)). The introduction of surfactant or surface charge on MWNT has contrasting effects on functionalised and non-functionalised nanotubes, destabilising and stabilising their dispersions, respectively.  相似文献   

10.
In the present study, a rapid and simple high-performance liquid chromatographic (HPLC) assay for determination of puerarin in rat cortex was developed. The analysis was carried out on a Zorbax SB-C18 column with mobile phase acetonitrile-0.5% aqueous phosphoric acid (11:89, v/v). The detection was by UV at 252 nm. The calibration curve for puerarin was linear (r=0.9999) over the concentration range 0.516-206.250 microg/mL. The limit of detection was 0.206 microg/mL (signal-to-noise ratio 3) and the limit of quantification (signal-to-noise ratio 10) was 0.516 microg/mL. Stability studies showed that puerarin was stable at temperatures of 4 degrees C in methanol for at least 30 days. The intra- and inter-day assays of puerarin from rat cortex were less than 2.5% at concentration range 0.516-206.250 microg/mL and good overall recoveries (97.4-101.7%) were found at same concentrations. The method was applied to determine the pharmacokinetic parameters and the time course of puerarin in rat cortex, following a single dosage of intravenous administration of flavonoids from Puerariae radix at 32 mg/kg of puerarin to male Wistar rats.  相似文献   

11.
Uniformly sized microspheres tangled with cup-stacked carbon nanofibers (CSCNFs) were directly synthesized by the pyrolysis of poly(ethylene glycol) (PEG) with a nickel catalyst. A PEG/Ni membrane was prepared on a silicon wafer surface by heating it to 750 °C at a heating rate of 15 °C min(-1). The wafer was heated to a temperature of 400 °C and was held at that temperature for 1 h before raising the temperature to 750 °C for 10 min to form the CSCNF microspheres. The final CSCNF microspheres and the intermediates were evaluated using scanning electron microscopy, transmission electron microscopy, X-ray diffractometry, and Raman spectroscopy to elucidate the growth mechanism. Furthermore, the CSCNF microspheres were successfully dispersed and maintained their spherical shape in an aqueous solution containing 0.5% Nafion. The CSCNF microspheres have the potential to work as a sophisticated carrier with high adsorption and fast electron-transfer exchange properties based on the graphene edges of the nanofiber surface.  相似文献   

12.
A liquid chromatographic-mass spectrometry (LC/MS) assay method was developed for the determination of amiodarone and desethylamiodarone in rat specimens. Analytes were extracted using liquid-liquid extraction in hexane. The LC/MS system consisted of a Waters Micromass ZQtrade mark 4000 spectrometer with an autosampler and pump. A C(18) 3.5 microm (2.1 x 50 mm) column heated to 45 degrees C was used for separation. The mobile phase consisted of methanol and 0.2% aqueous formic acid pumped at 0.2 mL/min as a linear gradient. Components eluted within 12 min. The concentrations of ethopropazine (internal standard), desethylamiodarone and amiodarone were monitored for m/z of 313.10, combination of 546.9 and 617.73, and 645.83, respectively. In plasma (0.1 mL), linearity was achieved between the peak area ratios and concentrations over the range of 2.5-1000 ng/mL for both amiodarone and desethylamiodarone (r(2) > 0.999). The intraday and interday CV were equal or less than 18%, and mean error was <12%. Similarly, in homogenates containing 0.1 g of rat tissue, linearity was observed in standards ranging from 5 to 5000 ng/g. The method was successfully used to measure tissue and plasma concentrations of drug. The validated lower limit of quantitation was 2.5 ng/mL for drug and metabolite, based on 0.1 mL of plasma.  相似文献   

13.
Methoxypoly(ethylene glycol)-b-oligo-L-lactate (mPEG-b-OLA) diblock oligomers with monodisperse OLA blocks were obtained by fractionation of polydisperse block oligomers using preparative HPLC. The fractionated oligomers were composed of an mPEG block with a molecular weight of 350, 550, or 750 and an OLA block with a degree of polymerization of 4, 6, 8, or 10. The diblock oligomers with a low PEG content were fully amorphous, with glass transition temperatures ranging from -60 to -20 degrees C, indicating that the blocks were miscible. Upon heating aqueous dispersions of the block oligomers, cloud points, depending on the PEG/OLA ratio of the block oligomer, were observed at temperatures above 40 degrees C. The monodispersity of the hydrophobic block enabled the amphiphilic molecules to form nanoparticles in water with a hydrodynamic radius of 130-300 nm, at concentrations above the critical aggregation concentration (0.4-1 mg/mL), whereas polydisperse mPEG-b-OLAs gave formation of large aggregates. Static light scattering measurements showed that the nanoparticles have a low density (0.6-25 mg/mL), indicating that the particles are highly hydrated. In agreement herewith, the (1)H NMR spectra of nanoparticles in D2O closely resembled spectra in a good solvent for both blocks (CDCl3). It is therefore suggested that the nanoparticles contain a hydrated core of mPEG-b-OLA block oligomers, stabilized by a thin outer PEG layer. The particles were stable for two weeks, except for the mPEG350 series and mPEG750-b-OLA4, indicating that both the PEG block size and the PEG weight fraction of the oligomers determine their stability. The evident self-emulsifying properties of mPEG-b-oligo-l-lactates with monodisperse hydrophobic blocks as demonstrated in this study, together with their expected biocompatibility and biodegradability, make these systems well suitable for pharmaceutical applications.  相似文献   

14.
Aqueous dispersions of graphene are of interest to afford environmentally safe handing of graphene for coating, composite, and other material applications. The dispersion of graphene in water and some other solvents using surfactants, polymers, and other dispersants is reviewed and results show that nearly completely exfoliated graphene may be obtained at concentrations from 0.001 to 5% by weight in water. The molecular features promoting good dispersion are reviewed. A critical review of optical extinction shows that the visible absorption coefficients of graphene have been reported over the ranges of 12 to 66 cm2/mg at various wavelengths. The practice of energetically activating graphene in various solvents with various stabilizers followed by centrifugation to isolate the “good” dispersion components is fine for producing samples amenable to TEM analysis and quantification, but cannot be expected to drive value added production of products on the kg or higher scale. Such approaches lack practical application and often involve 90–99% wasted graphene. However, alternative approaches omitting centrifugation are yielding dispersions 0.5 to 5% by weight graphene, with higher yields likely in the near future. These dispersions yield effective extinctions of about 49 cm2/mg, in conformity with macroscopic optical analysis of single and few layer graphene.  相似文献   

15.
A simple and accurate capillary electrophoresis method was developed for the determination of four quinolizidine alkaloids in Sophora flavescens and Kuhuang injection. Optimum separation of the analytes was obtained on a 65 cm x 75 microm i.d. uncoated fused-silica capillary using a aqueous buffer system of 60 mmol L(-1) sodium borate at pH 8.5, with applied voltage and capillary temperature of 12 kV and 25 degrees C, respectively. Detection wavelength was set at 204 nm and jatrorrhizine was used as the internal standard. Good linear relationships between peak-area ratios and concentrations of the analytes were observed over the concentration range 0.044-0.792 mg mL(-1) for matrine, 0.142-1.926 mg mL(-1) for oxymatrine, 0.0377-0.3393 mg mL(-1) for sophocarpine and 0.0664-1.062 mg mL(-1) for sophoridine. The recoveries of four alkaloids ranged between 93.08 and 101.4% with relative standard deviations from 0.7 to 9.2% (n = 6) as determined by standard addition. The limits of detection for four alkaloids were determined to be over the range 8.8-48.0 microg mL(-1). Contents of four alkaloids in Sophora flavescens and three alkaloids in Kuhuang injection were successfully determined under the optimum conditions.  相似文献   

16.
The size distributions of fibroblast growth factor-2 (FGF-2) in aqueous solutions with neutral pH were investigated with a dynamic light scattering technique. We found that the FGF-2 was distributed in dimer or trimer form at concentrations of 0.1-1.0 mg . mL(-1). An aggregate with a hydrodynamic radius of approximately 90 nm coexisted with this and its proportion increased with a decrease in concentration. At lower concentrations (less than 0.10 mg . mL(-1)) FGF-2 aggregates with an average radius of 80-100 nm were dominant and were stable for more than a day. These FGF-2 solutions were mixed with calcium phosphate solutions to produce a sub-micron sized compound of FGF-2 and hydroxyapatite, which could be used as a biological implant that possessed a pharmacological function for bone formation. By utilizing a transformation from amorphous calcium phosphate to hydroxyapatite, FGF-2 was effectively incorporated into polycrystals of hydroxyapatite.SEM photograph of a mixture of hydroxyapatite and FGF-2.  相似文献   

17.
Here, we report the effect of temperature on the extent of hydrazine reduction of graphene oxide in N,N-dimethylformamide (DMF)/water (80/20 v/v) and the dispersibility of the resultant graphene in DMF. The highly reduced graphene oxide (HRG) had a high C/O ratio and good dispersibility in DMF. The good dispersibility of HRGs is due to the solvation effect of DMF on graphene sheets during the hydrazine reduction, which diminishes the formation of irreversible graphene sheet aggregates. The dispersibility of the HRGs was varied from 1.66 to 0.38 mg/mL when the reduction temperature increased from 25 °C to 80 °C. The dispersibility of the HRGs was inversely proportional to the electrical conductivity of the HRGs, which varied from 17,400 to 25,500 S/m. The relationships between the C/O ratio, electrical conductivity, and dispersibility of the HRGs were determined and these properties were found to be easily controlled by manipulating the reduction temperature.  相似文献   

18.
Graphene oxide nanosheets have attracted multidisciplinary attention due to their unique physicochemical properties. Herein, few-layered graphene oxide nanosheets were synthesized from graphite using a modified Hummers method and were characterized by TEM, AFM, Raman spectroscopy, XPS, FTIR spectroscopy, TG-DTA and acid-base titrations. The prepared few-layered graphene oxide nanosheets were used as adsorbents for the preconcentration of U(VI) ions from large volumes of aqueous solutions as a function of pH, ionic strength and temperature. The sorption of U(VI) ions on the graphene oxide nanosheets was strongly dependent on pH and independent of the ionic strength, indicating that the sorption was mainly dominated by inner-sphere surface complexation rather than by outer-sphere surface complexation or ion exchange. The abundant oxygen-containing functional groups on the surfaces of the graphene oxide nanosheets played an important role in U(VI) sorption. The sorption of U(VI) on graphene oxide nanosheets increased with an increase in temperature and the thermodynamic parameters calculated from the temperature-dependent sorption isotherms suggested that the sorption of U(vi) on graphene oxide nanosheets was an endothermic and spontaneous process. The maximum sorption capacities (Q(max)) of U(VI) at pH 5.0 ± 0.1 and T = 20 °C was 97.5 mg g(-1), which was much higher than any of the currently reported nanomaterials. The graphene oxide nanosheets may be suitable materials for the removal and preconcentration of U(VI) ions from large volumes of aqueous solutions, for example, U(VI) polluted wastewater, if they can be synthesized in a cost-effective manner on a large scale in the future.  相似文献   

19.
A precolumn derivatization liquid chromatography (LC) method was developed for the analysis of various dietary supplement formulations and raw materials for glucosamine. A 1 mL sample or standard water solution (containing about 0.05 mg glucosamine) was mixed with 1 mL pH 8.3 buffer, 1 mL 5% phenylisothiocyanate methanolic solution, and derivatized at 80 degrees C in a water bath for 30 min. After derivatization, the solution was cooled in a cold water bath and centrifuged at 3000-5000 rpm. The clear upper layer was ready for injection. The LC system was equipped with a C18 reversed-phase column and an ultraviolet detector set at 240 nm. The column was developed with a linear gradient composed of 0.1% phosphoric acid in deionized water and 0.1% phosphoric acid in methanol. The method was subjected to Single Laboratory Validation. The method precision was 0.50% relative standard deviation, accuracy was less than +/-1.5%, method linearity in the range 0-2 mg glucosamine/mL was 1.00, the detection limit was 0.0705 microg/mL, and the quantitation limit was 0.235 microg/mL. Chondroitin sulfate, amino acids, and excipients did not interfere with glucosamine testing. After derivatization, both standard and sample preparations were stable for at least 48 h. Due to its high sensitivity, this method can be used to assay glucosamine in functional foods and pet foods. The validation data will be published separately.  相似文献   

20.
In this study, effectiveness of non-ionic block copolymers such as Lugalvan BNO12 and Triton X series (Triton X100 & Triton X405) has been reported for graphene dispersion in aqueous solutions. Stability of the aqueous graphene dispersions is investigated using UV–visible spectroscopy, Rheological, and Conductivity studies. Adsorption isotherms are constructed to determine the amount of polymers adsorbed on the surface of graphene by the spectroscopic analysis. Lugalvan BNO12 has been found to be adsorbed in higher amounts on the graphene surface compared to the Triton X series polymers. Thermogravimetric analysis (TGA) and Fourier Transform Infrared (FTIR) Spectroscopy investigations indicated grafting of polymers chains to the graphene surfaces. The dispersions prepared with optimum concentrations (as determined from adsorption isotherms) of polymers have shown lower viscosity and conductivity values. Lugalvan BNO12 has been found to be a better stabilizer for graphene than the Triton X series dispersants because the former contains two aromatic rings in its structure that acts as an anchoring group and helps in the stabilization of graphene dispersion in comparison to the single aromatic group in the Triton X series. The experimental results reported have shown that the aromaticity of polymeric dispersants plays significant role in the aqueous graphene dispersions. The non-ionic block copolymers that assisted dispersed graphene are potential candidates for the fabrication of various devices such as sensors, batteries, and supercapacitors applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号