首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 844 毫秒
1.
Li X  Huang S  Schienebeck CM  Shu D  Tang W 《Organic letters》2012,14(6):1584-1587
Functionalized cyclopentenones were synthesized by a Rh-catalyzed carbonylation of 3-acyloxy-1,4-enynes, derived from alkynes and α,β-unsaturated aldehydes. The reaction involved a Saucy-Marbet 1,3-acyloxy migration of propargyl esters and a [4 + 1] cycloaddition of the resulting acyloxy substituted vinylallene with CO.  相似文献   

2.
We have developed novel Rh‐catalyzed [n+1]‐type cycloadditions of 1,4‐enyne esters, which involve an acyloxy migration as a key step. The efficient preparation of functionalized resorcinols, including biaryl derivatives, from readily available 1,4‐enyne esters and CO was achieved by Rh‐catalyzed [5+1] cycloaddition accompanied by 1,2‐acyloxy migration. When enyne esters had an internal alkyne moiety, the reaction proceeded by a [4+1]‐type cycloaddition involving 1,3‐acyloxy migration, leading to cyclopentenones.  相似文献   

3.
A Rh-catalyzed 1,3-acyloxy migration of propargyl ester followed by intramolecular [4+2] cycloaddition of vinylallene and unactivated alkyne was developed. This tandem reaction provides access to bicyclic compounds containing a highly functionalized isotoluene or cyclohexenone structural motif, while only aromatic compounds were observed in related transition metal-catalyzed cycloadditions.  相似文献   

4.
The first theoretical study on the mechanism of [RhCl(CO)2]2-catalyzed [5 + 1] cycloadditions of 3-acyloxy-1,4-enyne (ACE) and CO has been performed using density functional theory (DFT) calculations. The effect of ester on reactivity of this reaction has been investigated. The computational results have revealed that the preferred catalytic cycle involves the sequential steps of 1,2-acyloxy migration, CO insertion, reductive elimination to form ketene intermediate, 6π-electroncyclization, and aromatization to afford the resorcinol product. The 1,2-acyloxy migration is found to be the rate-determining step of the catalytic cycle. The electron-rich p-dimethylaminobenzoate substrate promotes 1,2-acyloxy migration and significantly increases the reactivity by stabilizing the positive charge building up in the oxocyclic transition state.  相似文献   

5.
We have developed two different types of tandem reactions for the synthesis of highly functionalized cyclohexenones from cyclopropyl substituted propargyl esters. Both reactions were initiated by rhodium-catalyzed Saucy-Marbet 1,3-acyloxy migration. The resulting cyclopropyl substituted allenes derived from acyloxy migration then underwent [5 + 1] cycloaddition with CO. The acyloxy group not only eased the access to allene intermediates but also provided a handle for further selective functionalizations.  相似文献   

6.
A new type of rhodium-catalyzed [5 + 2] cycloaddition was developed for the synthesis of seven-membered rings with diverse functionalities. The ring formation was accompanied by a 1,2-acyloxy migration event. The five- and two-carbon components of the cycloaddition are 3-acyloxy-1,4-enynes (ACEs) and alkynes, respectively. Cationic rhodium(I) catalysts worked most efficiently for the intramolecular cycloaddition, while only neutral rhodium(I) complexes could facilitate the intermolecular reaction. In both cases, electron-poor phosphite or phosphine ligands often improved the efficiency of the cycloadditions. The scope of ACEs and alkynes was investigated in both the intra- and intermolecular reactions. The resulting seven-membered-ring products have three double bonds that could be selectively functionalized.  相似文献   

7.
[reaction: see text] The first Rh-catalyzed intramolecular [2 + 2 + 2 + 1] cycloaddition reaction of enediynes and CO is reported. This novel higher order cycloaddition process gives the corresponding 5-7-5 ring systems in high yield and selectivity. This process is another significant addition to the arsenal of cycloaddition-based synthetic methods, which provide powerful tools for rapid and efficient construction of complex polycyclic systems.  相似文献   

8.
Rholling in the bicycles: A rhodium(I)-catalyzed cycloisomerization for the synthesis of bicyclic compounds containing a cycloheptatriene ring from linear alkenynes (see scheme; cod=1,5-cyclooctadiene) is proposed to proceed through 1,2-acyloxy migration, 6?π electrocyclization, migratory insertion, and reductive elimination. The overall process can be viewed as a novel intramolecular [5+2] cycloaddition with concomitant 1,2-acyloxy migration.  相似文献   

9.
The first Pd‐catalyzed asymmetric allenylic [4+1] cycloaddition was successfully developed. Alternatively, tuning the Pd catalyst switched the reactivity toward an unprecedented [4+3] cycloaddition/cross‐coupling. Ligands play a vital role in controlling the reaction pathway, allowing highly selective access to different products from identical substrates. Biological evaluation of the obtained compounds led to the discovery of new antitumor targets. A possible mechanism is proposed, suggesting two interesting catalytic cycles for the cycloaddition with palladium‐butadienyls. This study also demonstrated the potential and utility of allenic esters as 1,4‐biselectrophiles and C4 synthons for participating in cycloaddition reactions.  相似文献   

10.
Intramolecular photocycloaddition (>290 nm) between a 1,3-enyne and a 2-pyridone is far more selective than the intermolecular version; a three-atom linkage both controls regiochemistry and separates the [2 + 2] and [4 + 4] pathways. All four head-to-head, head-to-tail, tail-to-head, and tail-to-tail tetherings have been investigated. Linkage via the ene of the enyne leads to [2 + 2] products regardless of alkene geometry, whereas linkage through the yne results in [4 + 4] cycloadducts. The bridged 1,2,5-cyclooctatriene products of [4 + 4] cycloaddition are unstable and undergo a subsequent [2 + 2] dimerization reaction.  相似文献   

11.
Catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions using chiral calcium species prepared from calcium isopropoxide and chiral bisoxazoline ligands have been developed. Glycine Schiff bases reacted with acrylic esters to afford 1,4-addition products, glutamic acid derivatives, in high yields with high enantioselectivities. During the investigation of the 1,4-addition reactions, we unexpectedly found that a [3 + 2] cycloaddition occurred in the reactions with crotonate derivatives, affording substituted pyrrolidine derivatives in high yields with high enantioselectivities. On the basis of this finding, we investigated asymmetric [3 + 2] cycloadditions, and it was revealed that several kinds of optically active substituted pyrrolidine derivatives containing contiguous stereogenic tertiary and quaternary carbon centers were obtained with high diastereo- and enantioselectivities. In addition, optically active pyrrolidine cores of hepatitis C virus RNA-dependent polymerase inhibitors and potential effective antiviral agents have been synthesized using this [3 + 2] cycloaddition reaction. NMR spectroscopic analysis and observation of nonamplification of enantioselectivity in nonlinear effect experiments suggested that a monomeric calcium species with an anionic ligand was formed as an active catalyst. A stepwise mechanism of the [3 + 2] cycloaddition, consisting of 1,4-addition and successive intramolecular Mannich-type reaction was suggested. Furthermore, modification of the Schiff base structure resulted in a modification of the reaction course from a [3 + 2] cycloaddition to a 1,4-addition, affording 3-substituted glutamic acid derivatives with high diasterero- and enantioselectivities.  相似文献   

12.
We report two new formal cycloaddition reactions between nitrosobenzenes and alkenylgold carbenoids. We obtained quinoline oxides 3 in satisfactory yields from the gold-catalyzed [3 + 3]-cycloadditions between nitrosobenzenes and alkenyldiazo esters 1. For propargyl esters 5, its resulting gold carbenes react with nitrosobenzene to give alkenylimine 8, followed by a [4 + 2]-cycloaddition with nitrosobenzene.  相似文献   

13.
Previously reported was that cis-ene-vinylcyclopropanes (cis-ene-VCPs) underwent Rh-catalyzed [5+2] reaction to give 5,7-fused bicyclic products, where vinylcyclopropane (VCP) acts as five-carbon synthon. Unfortunately, this reaction had very limited scope. Replacing the 2π component of cis-ene-VCPs to allene moiety, the corresponding cis-allene-VCPs did not undergo the expected normal [5+2] cycloaddition to give 5,7-fused bicyclic products. Instead, the challenging bicyclo[4.3.1]decane skeleton was obtained via an unprecedented bridged [5+2] cycloaddition. DFT calculations were applied to understand why this bridged [5+2] reaction is favored over the anticipated but not realized normal [5+2] reaction.  相似文献   

14.
A synthetic method that relies on gold(I)-catalyzed tandem 1,3-migration/[2 + 2] cycloaddition of 1,7-enyne benzoates to prepare azabicyclo[4.2.0]oct-5-enes is described.  相似文献   

15.
We have determined that a cationic rhodium(I)/Segphos complex catalyzes an enantio- and diastereoselective intermolecular [2+2+2] cycloaddition of 1,2-bis(arylpropiolyl)benzenes with various monoalkynes at room temperature to give axially chiral 1,4-teraryls possessing an anthraquinone structure in good yields with good enantio- and diastereoselectivities. We have also determined that a thermal intramolecular [4+2] cycloaddition of 1,2-bis(arylpropiolyl)benzenes proceeds at 60 degrees C to give aryl-substituted naphthacenediones in moderate to good yields.  相似文献   

16.
It has been established that a cationic rhodium(I)/P-phos complex catalyzes the asymmetric [2+2+2] cycloaddition of 1,6-enynes with racemic secondary allylic alcohols to produce the corresponding chiral bicyclic cyclohexenes, possessing three stereogenic centers, as a single diastereomer with excellent ee values. Mechanistic experiments revealed that the present cycloaddition proceeds through the kinetic resolution of the racemic secondary allylic alcohols, in which one enantiomer preferentially reacts with the 1,6-enyne.  相似文献   

17.
A synthetic method to stereoselectively prepare 4‐(cyclohexa‐1,3‐dienyl)‐1,3‐dioxolanes in good to excellent yields by gold(I)‐catalyzed [2+2+1] cycloaddition of 1,6‐diyne carbonates and esters with aldehydes is described. The cascade process involves 1,2‐acyloxy migration followed by cyclopropenation and cycloreversion. This leads to an unprecedented [2+2+1] cycloaddition of the resulting alkenylgold carbenoid species, examples of which are extremely rare, with two aldehyde molecules at catalyst loadings as low as 1 mol %. The usefulness of this cycloisomerization chemistry was further demonstrated by the transformation of one example to the corresponding phenol.  相似文献   

18.
Liu J  Wendt NL  Boarman KJ 《Organic letters》2005,7(6):1007-1010
[structure: see text] UV irradiation of the powdered crystalline sample of each of three (E,E)-1,4-di(trifluoromethyl-substituted)phenyl-1,3-butadienes (1-3) was found to yield a single [2 + 2] cycloaddition product in the solid state. Moreover, upon irradiation, the crystalline samples of two (E,E)-1,4-di(trifluoromethyl- and fluorine-substituted)phenyl-1,3-butadienes (4, 5) undergo a similar conversion to afford a [2 + 2] cycloaddition product, respectively. Our observations suggest that trifluoromethyl groups can be used to direct 1,4-diphenyl-1,3-butadiene molecules to form a parallel, offset-stacked orientation suitable for topochemical [2 + 2] cycloaddition.  相似文献   

19.
Kohei Fuchibe 《Tetrahedron》2006,62(49):11304-11310
An enantioselective [3+2]-type cycloaddition of allenylstannane and α-imino ester was developed. Synthetic utility of the 4-stannyldehydroproline ester intermediate was demonstrated: iodine oxidation and Stille coupling reaction of the intermediate afforded optically active 4-iodo- and 4-aryldehydroproline esters in good yields and in high ees, respectively.  相似文献   

20.
A scalable synthesis of 2,2-difluorohomopropargyl esters was achieved using a magnesium-promoted Barbier reaction of substituted difluoropropargyl bromides with alkyl chloroformates. These 2,2-difluorohomopropargyl esters were effective precursors in the synthesis of homopropargylic amides-by aminolysis using AlMe3, as well as of ketones-through the reaction of the corresponding Weinreb amides with Grignard reagents. Ring closing metathesis using difluorinated 1,7-enyne carbonyl compounds furnished six-membered diene products, which were used as susbstrates in a Diels-Alder reaction to afford 4,4-difluoroisoquinolin-3-ones. The [2 + 2 + 2] cycloaddition of alkynes with fluorinated 1,7-diyne amides gave 4,4-difluoro-1,4-dihydro-3(2H)-isoquinolinone derivatives regioselectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号