首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We establish the existence of global weak solutions of the two-dimensional incompressible Euler equations for a large class of non-smooth open sets. Loosely, these open sets are the complements (in a simply connected domain) of a finite number of obstacles with positive Sobolev capacity. Existence of weak solutions with L p vorticity is deduced from a property of domain continuity for the Euler equations that relates to the so-called γ-convergence of open sets. Our results complete those obtained for convex domains in Taylor (Progress in Nonlinear Differential Equations and their Applications, Vol. 42, 2000), or for domains with asymptotically small holes (Iftimie et al. in Commun Partial Differ Equ 28(1–2), 349–379, 2003; Lopes Filho in SIAM J Math Anal 39(2), 422–436, 2007).  相似文献   

2.
We consider the Navier–Stokes equations for the motion of compressible, viscous flows in a half-space ${\mathbb{R}^n_+,}$ n =  2,  3, with the no-slip boundary conditions. We prove the existence of a global weak solution when the initial data are close to a static equilibrium. The density of the weak solution is uniformly bounded and does not contain a vacuum, the velocity is Hölder continuous in (x, t) and the material acceleration is weakly differentiable. The weak solutions of this type were introduced by D. Hoff in Arch Ration Mech Anal 114(1):15–46, (1991), Commun Pure and Appl Math 55(11):1365–1407, (2002) for the initial-boundary value problem in ${\Omega = \mathbb{R}^n}$ and for the problem in ${\Omega = \mathbb{R}^n_+}$ with the Navier boundary conditions.  相似文献   

3.
Within the context of heteroepitaxial growth of a film onto a substrate, terraces and steps self-organize according to misfit elasticity forces. Discrete models of this behavior were developed by Duport et al. (J Phys I 5:1317–1350, 1995) and Tersoff et al. (Phys Rev Lett 75:2730–2733, 1995). A continuum limit of these was in turn derived by Xiang (SIAM J Appl Math 63:241–258, 2002) (see also the work of Xiang and Weinan Phys Rev B 69:035409-1–035409-16, 2004; Xu and Xiang SIAM J Appl Math 69:1393–1414, 2009). In this paper we formulate a notion of weak solution to Xiang’s continuum model in terms of a variational inequality that is satisfied by strong solutions. Then we prove the existence of a weak solution.  相似文献   

4.
In the works of Pericak-Spector and Spector (Arch Rational Mech Anal. 101:293–317, 1988, Proc. Royal Soc. Edinburgh Sect A 127:837–857, 1997) a class of self-similar solutions are constructed for the equations of radial isotropic elastodynamics that describe cavitating solutions. Cavitating solutions decrease the total mechanical energy and provide a striking example of non-uniqueness of entropy weak solutions (for polyconvex energies) due to point-singularities at the cavity. To resolve this paradox, we introduce the concept of singular limiting induced from continuum solution (or slic-solution), according to which a discontinuous motion is a slic-solution if its averages form a family of smooth approximate solutions to the problem. It turns out that there is an energetic cost for creating the cavity, which is captured by the notion of slic-solution but neglected by the usual entropic weak solutions. Once this cost is accounted for, the total mechanical energy of the cavitating solution is in fact larger than that of the homogeneously deformed state. We also apply the notion of slic-solutions to a one-dimensional example describing the onset of fracture, and to gas dynamics in Langrangean coordinates with Riemann data inducing vacuum in the wave fan.  相似文献   

5.
The purpose of this work is the comparison of some aspects of the formulation of material models in the context of continuum thermodynamics (e.g., ?ilhavý in The mechanics and thermodynamics of continuous media, Springer, Berlin, 1997) with their formulation in the form of a General Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC: e.g., Grmela and Öttinger in Phys. Rev. E 56: 6620–6632, 1997; Öttinger and Grmela in Phys. Rev. E 56: 6633–6655, 1997; Öttinger in Beyond equilibrium thermodynamics, Wiley, New York, 2005; Grmela in J. Non-Newton. Fluid Mech. 165: 980–998, 2010). A GENERIC represents a generalization of the Ginzburg-Landau model for the approach of non-equilibrium systems to thermodynamic equilibrium. Originally developed to formulate non-equilibrium thermodynamic models for complex fluids, it has recently been applied to anisotropic inelastic solids in a Eulerian setting (Hütter and Tervoort in J. Non-Newton. Fluid Mech. 152: 45–52, 2008; 53–65, 2008; Adv. Appl. Mech. 42: 254–317, 2009) as well as to damage mechanics (Hütter and Tervoort in Acta Mech. 201: 297–312, 2008). In the current work, attention is focused for simplicity on the case of thermoelastic solids with heat conduction and viscosity in a Lagrangian setting (e.g., ?ilhavý in The mechanics and thermodynamics of continuous media, Springer, Berlin, 1997, Chaps. 9–12). In the process, the relation of the two formulations to each other is investigated in detail. A particular point in this regard is the concept of dissipation and its model representation in both contexts.  相似文献   

6.
We derive the quantitative modulus of continuity $$\omega(r)=\left[ p+\ln \left( \frac{r_0}{r}\right)\right]^{-\alpha (n, p)},$$ which we conjecture to be optimal for solutions of the p-degenerate two-phase Stefan problem. Even in the classical case p = 2, this represents a twofold improvement with respect to the early 1980’s state-of-the-art results by Caffarelli– Evans (Arch Rational Mech Anal 81(3):199–220, 1983) and DiBenedetto (Ann Mat Pura Appl 103(4):131–176, 1982), in the sense that we discard one logarithm iteration and obtain an explicit value for the exponent α(n, p).  相似文献   

7.
We establish a new local well-posedness result in the space of finite Borel measures for mild solutions of the parabolic–elliptic Patlak–Keller–Segel (PKS) model of chemotactic aggregation in two dimensions. Our result only requires that the initial measure satisfy the necessary assumption \({\max_{x \in \mathbb{R}^2} \mu (\{x\}) < 8 \pi}\) . This work improves the small-data results of Biler (Stud Math 114(2):181–192, 1995) and the existence results of Senba and Suzuki (J Funct Anal 191:17–51, 2002). Our work is based on that of Gallagher and Gallay (Math Ann 332:287–327, 2005), who prove the uniqueness and log-Lipschitz continuity of the solution map for the 2D Navier–Stokes equations (NSE) with measure-valued initial vorticity. We refine their techniques and present an alternative version of their proof which yields existence, uniqueness and Lipschitz continuity of the solution maps of both PKS and NSE. Many steps are more difficult for PKS than for NSE, particularly on the level of the linear estimates related to the self-similar spreading solutions.  相似文献   

8.
An essential part in modeling out-of-equilibrium dynamics is the formulation of irreversible dynamics. In the latter, the major task consists in specifying the relations between thermodynamic forces and fluxes. In the literature, mainly two distinct approaches are used for the specification of force–flux relations. On the one hand, quasi-linear relations are employed, which are based on the physics of transport processes and fluctuation–dissipation theorems (de Groot and Mazur in Non-equilibrium thermodynamics, North Holland, Amsterdam, 1962, Lifshitz and Pitaevskii in Physical kinetics. Volume 10, Landau and Lifshitz series on theoretical physics, Pergamon Press, Oxford, 1981). On the other hand, force–flux relations are also often represented in potential form with the help of a dissipation potential (?ilhavý in The mechanics and thermodynamics of continuous media, Springer, Berlin, 1997). We address the question of how these two approaches are related. The main result of this presentation states that the class of models formulated by quasi-linear relations is larger than what can be described in a potential-based formulation. While the relation between the two methods is shown in general terms, it is demonstrated also with the help of three examples. The finding that quasi-linear force–flux relations are more general than dissipation-based ones also has ramifications for the general equation for non-equilibrium reversible–irreversible coupling (GENERIC: e.g., Grmela and Öttinger in Phys Rev E 56:6620–6632, 6633–6655, 1997, Öttinger in Beyond equilibrium thermodynamics, Wiley Interscience Publishers, Hoboken, 2005). This framework has been formulated and used in two different forms, namely a quasi-linear (Öttinger and Grmela in Phys Rev E 56:6633–6655, 1997, Öttinger in Beyond equilibrium thermodynamics, Wiley Interscience Publishers, Hoboken, 2005) and a dissipation potential–based (Grmela in Adv Chem Eng 39:75–129, 2010, Grmela in J Non-Newton Fluid Mech 165:980–986, 2010, Mielke in Continuum Mech Therm 23:233–256, 2011) form, respectively, relating the irreversible evolution to the entropy gradient. It is found that also in the case of GENERIC, the quasi-linear representation encompasses a wider class of phenomena as compared to the dissipation-based formulation. Furthermore, it is found that a potential exists for the irreversible part of the GENERIC if and only if one does for the underlying force–flux relations.  相似文献   

9.
In this paper, we study the local behaviors of nonnegative local solutions of fractional order semi-linear equations ${(-\Delta )^\sigma u=u^{\frac{n+2\sigma}{n-2\sigma}}}$ with an isolated singularity, where ${\sigma\in (0,1)}$ . We prove that all the solutions are asymptotically radially symmetric. When σ = 1, these have been proved by Caffarelli et al. (Comm Pure Appl Math 42:271–297, 1989).  相似文献   

10.
We establish existence, uniqueness, convergence and stability of solutions to the equations of steady flows of fibre suspension flows. The existence of a unique steady solution is proven by using an iterative scheme. One of the restrictions imposed on the data confirms a well known fact proven in Galdi and Reddy (J Non-Newtonian Fluid Mech 83:205–230, 1999), Munganga and Reddy (Math Models Methods Appl Sci 12:1177–1203, 2002) and Munganga et al. (J Non-Newtonian fluid Mech 92:135–150, 2000) that the particle number N p must be less than 35/2. Exact solutions are calculated for Couette and Poiseuille flows. Solutions of Poiseuille flows are shown to be more accurate than those of Couette flow when a time perturbation is considered.  相似文献   

11.
12.
Consider transportation of one distribution of mass onto another, chosen to optimize the total expected cost, where cost per unit mass transported from x to y is given by a smooth function c(x, y). If the source density f +(x) is bounded away from zero and infinity in an open region ${U' \subset \mathbf{R}^n}$ , and the target density f ?(y) is bounded away from zero and infinity on its support ${\overline{V} \subset \mathbf{R}^n}$ , which is strongly c-convex with respect to U′, and the transportation cost c satisfies the ${\mathbf{A3}_{\rm w}}$ condition of Trudinger and Wang (Ann Sc Norm Super Pisa Cl Sci 5, 8(1):143–174, 2009), we deduce the local Hölder continuity and injectivity of the optimal map inside U′ (so that the associated potential u belongs to ${C^{1,\alpha}_{loc}(U')}$ ). Here the exponent α > 0 depends only on the dimension and the bounds on the densities, but not on c. Our result provides a crucial step in the low/interior regularity setting: in a sequel (Figalli et al., J Eur Math Soc (JEMS), 1131–1166, 2013), we use it to establish regularity of optimal maps with respect to the Riemannian distance squared on arbitrary products of spheres. Three key tools are introduced in the present paper. Namely, we first find a transformation that under ${\mathbf{A3}_{\rm w}}$ makes c-convex functions level-set convex (as was also obtained independently from us by Liu (Calc Var Partial Diff Eq 34:435–451, 2009)). We then derive new Alexandrov type estimates for the level-set convex c-convex functions, and a topological lemma showing that optimal maps do not mix the interior with the boundary. This topological lemma, which does not require ${\mathbf{A3}_{\rm w}}$ , is needed by Figalli and Loeper (Calc Var Partial Diff Eq 35:537–550, 2009) to conclude the continuity of optimal maps in two dimensions. In higher dimensions, if the densities f ± are Hölder continuous, our result permits continuous differentiability of the map inside U′ (in fact, ${C^{2,\alpha}_{loc}}$ regularity of the associated potential) to be deduced from the work of Liu et al. (Comm Partial Diff Eq 35(1):165–184, 2010).  相似文献   

13.
The availability of focused ion beam (FIB) milling, nanoindentation, and microelectromechanical systems (MEMS) based test platforms has enabled small-scale mechanical testing to become an increasingly popular approach for measuring material properties. While great emphasis has been placed on measuring plastic properties at the micro- and nanoscale [1, 2], an area that has received significantly less consideration is the measurement of fracture toughness. A technique for performing small-scale, in situ fracture toughness tests using double edge notched tensile (DENT) specimens has been developed and used to measure a nearly 40 % reduction in toughness associated with the addition of Bi to the grain boundary of a Cu bicrystal. That Bi embrittles Cu grain boundaries is well known [310], however, as shown herein, the DENT technique offers certain advantages over existing boundary fracture tests, especially when used with ductile materials.  相似文献   

14.
The goal of this paper is to reconsider the classical elliptic system rot vf, div vg in simply connected domains with bounded connected boundaries (bounded and exterior sets). The main result shows solvability of the problem in the maximal regularity regime in the L p -framework taking into account the optimal/minimal requirements on the smoothness of the boundary. A generalization for the Besov spaces is studied, too, for \({{\bf f} \in \dot B^s_{p,q}(\Omega)}\) for \({-1+\frac 1p < s < \frac 1p}\) . As a limit case we prove the result for \({{\bf f} \in \dot B^0_{3,1}(\Omega)}\) , provided the boundary is merely in \({B^{2-1/3}_{3,1}}\) . The dimension three is distinguished due to the physical interpretation of the system. In other words we revised and extended the classical results of Friedrichs (Commun Pure Appl Math 8;551–590, 1955) and Solonnikov (Zap Nauch Sem LOMI 21:112–158, 1971).  相似文献   

15.
We prove various decay bounds on solutions (f n : n > 0) of the discrete and continuous Smoluchowski equations with diffusion. More precisely, we establish pointwise upper bounds on n ? f n in terms of a suitable average of the moments of the initial data for every positive ?. As a consequence, we can formulate sufficient conditions on the initial data to guarantee the finiteness of ${L^p(\mathbb{R}^d \times [0, T])}$ norms of the moments ${X_a(x, t) := \sum_{m\in\mathbb{N}}m^a f_m(x, t)}$ , ( ${\int_0^{\infty} m^a f_m(x, t)dm}$ in the case of continuous Smoluchowski’s equation) for every ${p \in [1, \infty]}$ . In previous papers [11] and [5] we proved similar results for all weak solutions to the Smoluchowski’s equation provided that the diffusion coefficient d(n) is non-increasing as a function of the mass. In this paper we apply a new method to treat general diffusion coefficients and our bounds are expressed in terms of an auxiliary function ${\phi(n)}$ that is closely related to the total increase of the diffusion coefficient in the interval (0, n].  相似文献   

16.
This paper concerns the well-posedness theory of the motion of a physical vacuum for the compressible Euler equations with or without self-gravitation. First, a general uniqueness theorem of classical solutions is proved for the three dimensional general motion. Second, for the spherically symmetric motions, without imposing the compatibility condition of the first derivative being zero at the center of symmetry, a new local-in-time existence theory is established in a functional space involving less derivatives than those constructed for three-dimensional motions in (Coutand et al., Commun Math Phys 296:559–587, 2010; Coutand and Shkoller, Arch Ration Mech Anal 206:515–616, 2012; Jang and Masmoudi, Well-posedness of compressible Euler equations in a physical vacuum, 2008) by constructing suitable weights and cutoff functions featuring the behavior of solutions near both the center of the symmetry and the moving vacuum boundary.  相似文献   

17.
The isoperimetric ratio of an embedded surface in ${\mathbb{R}^3}$ is defined as the ratio of the area of the surface to power three to the squared enclosed volume. The aim of the present work is to study the minimization of the Willmore energy under fixed isoperimetric ratio when the underlying abstract surface has fixed genus ${g \geqq 0}$ . The corresponding problem in the case of spherical surfaces, that is g = 0, was recently solved by Schygulla (see Schygulla, Arch Ration Mech Anal 203:901–941, 2012) with different methods.  相似文献   

18.
In this paper we prove the local controllability to trajectories of the three dimensional magnetohydrodynamic equations by means of two internal controls, one in the velocity equations and the other in the magnetic field equations and both localized in an arbitrary small subset with not empty interior of the domain. This paper improves the previous results (Barbu et al. in Comm Pure Appl Math 56:732–783, 2003; Barbu et al. in Adv Differ Equ 10:481–504, 2005; Havârneanu et al. in Adv Differ Equ 11:893–929, 2006; Havârneanu, in SIAM J Control Optim 46:1802–1830, 2007) where the second control is not localized and it allows to deduce the local controllability to trajectories with boundary controls. The proof relies on the Carleman inequality for the Stokes system of Imanuvilov et al. (Carleman estimates for second order nonhomogeneous parabolic equations, preprint) to deal with the velocity equations and on a new Carleman inequality for a Dynamo-type equation to deal with the magnetic field equations.  相似文献   

19.
We consider the sinh-Poisson equation $$(P) _ \lambda - \Delta{u} = \lambda \, {\rm sinh} \, u \quad {\rm in} \, \Omega, \quad u = 0 \quad {\rm on} \, \partial\Omega$$ , where Ω is a smooth bounded domain in ${\mathbb{R}^2}$ and λ is a small positive parameter. If ${0 \in \Omega}$ and Ω is symmetric with respect to the origin, for any integer k if λ is small enough, we construct a family of solutions to (P) λ , which blows up at the origin, whose positive mass is 4πk(k?1) and negative mass is 4πk(k + 1). This gives a complete answer to an open problem formulated by Jost et al. (Calc Var PDE 31(2):263–276, 2008).  相似文献   

20.
Two mathematical physics’ approaches have recently gained increasing importance both in mathematical and in physical theories: (i) the fractional action-like variational approach which founds its significance in dissipative and non-conservative systems and (ii) the theory of non-standard Lagrangians which exist in some group of dissipative dynamical systems and are entitled “non-natural” by Arnold. Both approaches are discussed independently in the literature; nevertheless, we believe that the combination of both theories will help identifying more hidden solutions in certain classes of dynamical systems. Accordingly, we generalize the fractional action-like variational approach for the case of non-standard power-law Lagrangians of the form L 1+γ $(\gamma\in\mathbb{R})$ recently introduced by the author (Qual. Theory Dyn. Syst. doi:10.1007/s12346-012-0074-0, 2012). Many interesting features are discussed in some details.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号