首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article deals with the onset of thermosolutal natural convection in horizontal superposed fluid and porous layers. A linear stability analysis is performed using the one-domain approach. As in the thermal convection case, the results show a bimodal nature of the marginal stability curves where each mode corresponds to a different convective instability. At small wave numbers, the convective flow occurs in the whole cavity (“porous mode”) while perturbations of large wave numbers lead to a convective flow mainly confined in the fluid layer (“fluid mode”). Furthermore, it is shown that the onset of thermosolutal natural convection is characterized by a multi-cellular flow in the fluid region for negative thermal Rayleigh numbers. For positive thermal Rayleigh numbers, the convective flow takes place both in the fluid and porous regions. The influence of the depth ratio and thermal diffusivity ratio is also investigated for a wide range of the thermal Rayleigh numbers.  相似文献   

2.
The onset of convection and its nonlinear regimes in a heated from below two-layer system consisting of a horizontal pure fluid layer and porous medium saturated by the same fluid is studied under the conditions of static gravitational field. The problem is solved numerically by the finite-difference method. The competition between the long-wave and short-wave convective modes at various ratios of the porous layer to the fluid layer thicknesses is analyzed. The data on the nature of convective motion excitation and flow structure transformation are obtained for the range of the Rayleigh numbers up to quintuple supercriticality. It has been found that in the case of a thick porous layer the steady-state convective regime occurring after the establishment of the mechanical equilibrium becomes unstable and gives way to the oscillatory regime at some value of the Rayleigh number. As the Rayleigh number grows further the oscillatory regime of convection is again replaced by the steady-state convective regime.  相似文献   

3.
The problem of the convection of a weakly compressible fluid is considered. In the free convection equations a heat source function is taken into account. The stability of the equilibrium state of a horizontal layer relative to small perturbations is studied using the linearization method. On the basis of numerical calculations it is shown that the mechanical equilibrium state of the fluid is unstable. The neutral curves are plotted and the critical Rayleigh numbers are found. In the calculations values of the physical parameters typical of Lake Baikal were used.  相似文献   

4.
The problem of natural convection of a binary mixture in a thin porous ring is considered. In the simplified formulation steady-state solutions of the problem are obtained. The stability of these solutions is investigated and a stability map is plotted in the plane of the Rayleigh numbers calculated from the temperature and concentration. It is shown that an auto-oscillation convection regime is established in the ring under certain conditions. It is also found that there is a region of variation of the seepage and diffusion-seepage Rayleigh numbers in which three steady-state solutions are stable.  相似文献   

5.
A numerical study has been undertaken to investigate the nature of inviscid instability of the three-dimensional compressible boundary layer flow due to a rotating disk. The compressible Rayleigh equation is integrated using a spectral Chebyshev-collocation method together with a fourth-order Runge–Kutta integrator. In the context of spatio-temporal stability analysis, the singularities of the resulting dispersion relation are determined and the ones that satisfy the Briggs–Bers pinching criterion have been selected. In certain finite parameter regions of eigenvalues (wave numbers and wave angles, for instance) it is found that by varying the Mach number, absolute instability occurs in the compressible boundary layer on a rotating disk. The range corresponding to the incompressible flow case given in Lingwood (1995) (ε between 14.615° and 38.114°) is verified. The results of Cole (1995) are also verified. The overall effect of compressibility is to reduce the extent of absolute instability at higher Mach numbers. The effect of heating the wall is to enhance the absolute instability properties, however, cooling the wall is found to decrease greatly the region of absolute instability regime for the range of Mach numbers studied. It is also shown in this study that for non-insulated walls a direct spatial resonance of the eigenmodes is possible and this raises the possibility of large local algebraic growth of perturbations being important in some instances. Received 15 October 1999 and accepted 10 December 1999  相似文献   

6.
The influence of vibrations of a cavity containing a fluid on the convective stability of the equilibrium has been investigated on a number of occasions [1]. The stability of convective flows in a modulated gravity field has not hitherto been studied systematically. There is only the paper of Baxi, Arpaci, and Vest [2], which contains fragmentary data corresponding to various values of the determining parameters of the problem. The present paper investigates the linear stability of convective flow in a vertical plane layer with walls at different temperatures in the presence of longitudinal harmonic vibrations of the cavity containing the fluid. It is assumed that the frequency of the vibrations is fairly high; the motion is described by the equations of the averaged convective motion. The stability boundaries of the flow with respect to monotonic perturbations in the region of Prandtl numbers 0 ? P ? 10 are determined. It is found that high-frequency vibrations have a destabilizing influence on the convective motion. At sufficiently large values of the vibration parameter, the flow becomes unstable at arbitrarily small values of the Grashof number, this being due to the mechanism of vibrational convection, which leads to instability even under conditions of weightlessness, when the main flow is absent [3, 4].  相似文献   

7.
夏南 《力学与实践》2001,23(4):49-51
将不可压无黏旋流在轴对称扰动情况下名的Rayleigh稳定性准则推广到可压缩情况,由物理机理的分析出发导出可压缩无流在轴对称扰下旋转流稳定性的准同,并将此准则与其它稳定性条件进行了比较。  相似文献   

8.
This paper studies Rayleigh-Bénard convection of micropolar fluid layer heated from below with realistic boundary conditions. A specific approach for stability analysis of a convective problem based on variational principle is applied to characterize the Rayleigh number for quite general nature of bounding surfaces. The analysis consists of replacing the set of field equations by a variational principle and the expressions for Rayleigh number are then obtained by using trial function satisfying the essential boundary conditions. Further, the values of the Rayleigh number for particular cases of large and small values of the microrotation coefficient have been obtained. The effects of wave number and micropolar parameter on the Rayleigh numbers for onset of stationary instability for each possible combination of the bounding surfaces are discussed and illustrated graphically. The present analysis establishes that the nature of bounding surfaces combination and microrotation have significant effect on the onset of convection.  相似文献   

9.
The convective stability of quasi-equilibriumof a fluid layer formed by two horizontal coaxial cylindrical surfaces which have different temperatures and rotate at the same angular velocity about the axis of symmetry is investigated theoretically and experimentally. Consideration is carried out from the standpoint of thermal vibrational convection caused by the average lifting force generated as a result of vibrations of a nonisothermal fluid with respect to the cavity. The vibrations are induced by an external field. The action of the centrifugal force field is also taken into account. Stability of mechanical quasi-equilibrium with respect to monotonic plane perturbations, which are, as shown experimentally, the most dangerous, is studied within the framework of the linear analysis. The stability boundaries are constructed for layers of various relative thickness in the plane of control parameters, the centrifugal and vibrational Rayleigh numbers. The thresholds of excitation of two-dimensional convective structures obtained experimentally are in good agreement with the theoretical ones.  相似文献   

10.
A mathematical model of fluid convection under microgravity conditions is considered. The equation of state is used in a form that allows considering the fluid as a weakly compressible medium. Based on the previously proposed mathematical model of convection of a weakly compressible fluid, unsteady convective motion in a vertical band, with a heat flux periodic in time set on the solid boundaries of this band, is considered. This model of convection allows one to study the problem with the boundary thermal model oscillating in an antiphase rather than in-phase mode, while the latter was required for the model of microconvection of an isothermally incompressible fluid. Exact solutions for velocity components and temperature are derived, and the trajectories of fluid particles are constructed. For comparison, the trajectories predicted by the classical Oberbeck-Boussinesq model of convection and by the microconvection model are presented.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 2, pp. 52–63, March–April, 2005.  相似文献   

11.
The onset of double diffusive convection in a viscoelastic fluid layer is studied using a linear and a weak nonlinear stability analyses. The onset criterion for stationary, oscillatory and finite amplitude convection is derived analytically. There is a competition between the processes of thermal diffusion, solute diffusion and viscoelasticity that causes the convection to set in through oscillatory mode rather than stationary. The effect of Deborah number, retardation parameter, solutal Rayleigh number, Prandtl number, Lewis number on the stability of the system is investigated. It is shown that the critical frequency increases with Deborah number and solutal Rayleigh number while it decreases with retardation parameter and Lewis number. The nonlinear theory based on the truncated representation of Fourier series method is used to find the heat and mass transfers. The transient behaviour of the Nusselt number and Sherwood number is investigated by solving the finite amplitude equations using Runge-Kutta method. The effect of viscoelastic parameters on heat and mass transfer is brought out.  相似文献   

12.
On the basis of a numerical simulation of convection in a horizontal fluid layer with a uniform heat source it is concluded that the convective heat flux is constant over the entire convection layer not only in the case of steady-state external conditions but also in the case of heating (cooling) of the fluid layer at a constant rate. The convective heat flux is mainly determined by the Rayleigh number and depends only slightly on the layer heating (cooling) rate.  相似文献   

13.
Numerical solutions of stability and convective flow in an infinite horizontal water layer, including density inversion, have been obtained using a finite element code. The evolution of the temperature field and flow pattern near the onset of convection are studied in detail. It is known that natural convection develops primarily in the lower unstably stratified layer. Of interest is the penetration of the convection rolls into the upper stably stratified layer and concurrent liquid entrainment as a function of the increasing Rayleigh number at different aspect ratios. Individual convection rolls may grow and expand before splitting up into two roll cells. It is shown that changing the aspect ratio influences critical Rayleigh number, flow symmetry, flow pattern, and transitions between flow patterns. Numerical results on heating from above or from below, agree well with available results in the literature. A correlation to predict critical Rayleigh numbers is given for the case of heating from above.  相似文献   

14.
In a two-layer system loss of stability may be monotonic or oscillatory in character. Increasing oscillatory perturbations have been detected in the case of both Rayleigh [1, 2] and thermocapillary convection [3–5]; however, for many systems the minimum of the neutral curve corresponds to monotonic perturbations. In [5] an example was given of a system for which oscillatory instability is most dangerous when the thermogravitational and thermocapillary instability mechanisms are simultaneously operative. In this paper the occurrence of convection in a two-layer system due to the combined action of the Rayleigh (volume) and thermocapillary (surface) instability mechanisms is systematically investigated. It is shown that when the Rayleigh mechanism operates primarily in the upper layer of fluid, in the presence of a thermocapillary effect oscillatory instability may be the more dangerous. If thermogravitational convection is excited in the lower layer of fluid, the instability will be monotonic.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 166–170, January–February, 1987.  相似文献   

15.
The nonlinear stability of the motionless state of a binary fluid mixture heated and salted from below, in the Oberbeck-Boussinesq scheme, is studied, in the stress-free boundary case. A stabilizing effect of gradient of solute on thermal convection is shown and a globally nonlinear exponential stability theorem is proved. In particular, when the ratio r of the Schmidt and the Prandtl number is less than 1, a region of coincidence of linear and nonlinear critical parameters is found. The stability of plane parallel convective flows (plane Couette and Poiseuille flows with linear temperature and concentration profiles) is also studied. Stability conditions independent of Reynolds number are found.  相似文献   

16.
Finger type double diffusive convective instability in a fluid-saturated porous medium is studied in the presence of coupled heat-solute diffusion. A local thermal non-equilibrium (LTNE) condition is invoked to model the Darcian porous medium which takes into account the energy transfer between the fluid and solid phases. Linear stability theory is implemented to compute the critical thermal Rayleigh number and the corresponding wavenumber exactly for the onset of stationary convection. The effects of Soret and Dufour cross-diffusion parameters, inter-phase heat transfer coefficient and porosity modified conductivity ratio on the instability of the system are investigated. The analysis shows that positive Soret mass flux triggers instability and positive Dufour energy flux enhances stability whereas their combined influence depends on the product of solutal Rayleigh number and Lewis number. It also reveals that cell width at the convection threshold gets affected only in the presence of both the cross-diffusion fluxes. Besides, asymptotic solutions for both small and large values of the inter-phase heat transfer coefficient and porosity modified conductivity ratio are found. An excellent agreement is found between the exact and asymptotic solutions.  相似文献   

17.
A linear stability analysis is performed to analyze bioconvection in a dilute suspension of gyrotactic microorganisms in horizontal shallow fluid layer cooling from below and saturated by a porous medium, in the rigid boundary case. It is established that due to cooling from below thermally stratified layer is stabilized, which opposes the development of bioconvection and the situations for oscillatory convection may take place. The stability criterion is obtained in terms of thermal Rayleigh number, bioconvection Rayleigh number, gyrotactic number, bioconvection Peclet number, measure of cell eccentricity, Prandtl number, and Lewis number. It is observed that the presence of porous medium results in decrease of the magnitude of critical bioconvection Rayleigh number in comparison with its non-existence; hence due to porous effect, the system becomes less stable.  相似文献   

18.
The present paper is devoted to numerical investigation of the spatial structure and stability of secondary vibrational convective flows resulting from instability of the equilibrium of a fluid heated from below. Vibrations parallel to the vector of the gravitational force (vertical vibrations) are considered. As in earlier work [7–9], a region of finite size is used — a square cavity heated from below. It is shown that enhancement of the vibrational disturbance of the natural convective flow may either stabilize or destabilize flows with different spatial structures; it may also stabilize certain solutions of the system of convection equations that are unstable in the absence of vibrational forces. In addition, increase of the vibrational Rayleigh number can lead to a change of the mechanisms responsible for equilibrium instability and oscillatory instability of the secondary steady flows.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 9–18, March–April, 1991.I thank G. Z. Gershuni for assistance and extremely fruitful discussions of the results of the paper.  相似文献   

19.
Double diffusive convection in a fluid-saturated rotating porous layer is studied when the fluid and solid phases are not in local thermal equilibrium, using both linear and nonlinear stability analyses. The Brinkman model that includes the Coriolis term is employed as the momentum equation. A two-field model that represents the fluid and solid phase temperature fields separately is used for the energy equation. The onset criterion for stationary, oscillatory, and finite amplitude convection is derived analytically. It is found that small inter-phase heat transfer coefficient has significant effect on the stability of the system. There is a competition between the processes of thermal diffusion, solute diffusion, and rotation that causes the convection to set in through either oscillatory or finite amplitude mode rather than stationary. The effect of solute Rayleigh number, porosity modified conductivity ratio, Lewis number, diffusivity ratio, Vadasz number, and Taylor number on the stability of the system is investigated. The nonlinear theory based on the truncated representation of Fourier series method predicts the occurrence of subcritical instability in the form of finite amplitude motions. The effect of thermal non-equilibrium on heat and mass transfer is also brought out. Some of the convection systems previously reported in the literature is shown to be special cases of the system presented in this study.  相似文献   

20.
The stability of stationary plane-parallel convective flow between horizontal planes along which a constant temperature gradient is given, is investigated relative to spatial perturbations. It is shown that the flow crisis is caused by spiral perturbations in a broad range of Prandtl number values (P > 0.24). Spiral perturbations are developed in unstably stratified fluid layers adjoining the upper and lower layer boundaries, and are of Rayleigh nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号