首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper investigates flow past a rotating circular cylinder at 3600?Re?5000 and α?2.5. The flow parameter α is the circumferential speed at the cylinder surface normalized by the free-stream velocity of the uniform cross-flow. With particle image velocimetry (PIV), vortex shedding from the cylinder is clearly observed at α<1.9. The vortex pattern is very similar to the vortex street behind a stationary circular cylinder; but with increasing cylinder rotation speed, the wake is observed to become increasing narrower and deflected sideways. Properties of large-scale vortices developed from the shear layers and shed into the wake are investigated with the vorticity field derived from the PIV data. The vortex formation length is found to decrease with increasing α. This leads to a slow increase in vortex shedding frequency with α. At α=0.65, vortex shedding is found to synchronize with cylinder rotation, with one vortex being shed every rotation cycle of the cylinder. Vortex dynamics are studied at this value of α with the phase-locked eduction technique. It is found that although the shear layers at two different sides of the cylinder possess unequal vorticity levels, alternating vortices subsequently shed from the cylinder to join the two trains of vortices in the vortex street pattern exhibit very little difference in vortex strength.  相似文献   

2.
Base-pressure fluctuations behind a long cylinder (l/d 5–10) and the disk (l/ d 0.0) is investigated experimentally in this paper. The spectral and correlation characteristics of the base-pressure fluctuations behind axisymmetric bodies at a Mach number M 1.0 are generalized on the basis of the data obtained and the results of other authors.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 181–183, January–February, 1977.  相似文献   

3.
4.
5.
6.
Active and passive flow control methods have been studied for decades, but there have been only a few studies of flow control methods using ion wind, which is the bulk motion of neutral molecules driven by locally ionized air from a corona discharge. This paper describes an experimental study of ion wind wake control behind a circular cylinder. The experimental conditions consisted of a range of electrohydrodynamic numbers—the ratio of an electrical body force to a fluid inertial force—from 0 to 2 and a range of Reynolds numbers from 4×103 to 8×103. Pressure distributions over the cylinder surface were measured and flow visualizations were carried out using a smoke-wire method. The flow visualizations confirmed that ion wind significantly affects the wake structure behind a circular cylinder, and that the pressure drag can be dramatically reduced by superimposing ion wind.List of symbols BR blockage ratio - C d coefficient of the pressure drag - C p coefficient of the surface pressure, 2(pp 0)/(U 0 2) - C pb coefficient of the base surface pressure, 2(p bp 0)/(U 0 2) - D diameter of the cylinder - D P pressure drag - d p diameter of particle - E the electric field - F e Coulombian force (qE) - F v viscous force - H wire-to-cylinder spacing - I total electric current (A) - L the axial length of cylinder (m) - N EHD electrohydrodynamic number - p b base pressure of cylinder at =180° - p 0 reference static pressure at 10D upstream - q the charge on the particle - R radius of the cylinder - V applied voltage (kV) - U 0 mean flow velocity (m/s) - ion mobility in air (m2/(s V)) - 0 permittivity of free space - viscosity of fluid (kg/ms) - density of fluid (kg/m3) - installation angle of a wire electrode (°)  相似文献   

7.
A numerical investigation of the flow past a circular cylinder centred in a two-dimensional channel of varying width is presented. For low Reynolds numbers, the flow is steady. For higher Reynolds numbers, vortices begin to shed periodically from the cylinder. In general, the Strouhal frequency of the shedding vortices increases with blockage ratio. In addition, a two-dimensional instability of the periodic vortex shedding is found, both empirically and by means of a Floquet stability analysis. The instability leads to a beating behaviour in the lift and drag coefficients of the cylinder, which occurs at a Reynolds number higher than the critical Reynolds number for the three-dimensional mode A-type instability, but lower than a Reynolds number for any mode B-type instability.  相似文献   

8.
On the basis of the two-dimensional Navier-Stokes equations, the initiation and development of the separated flow behind a thermally insulated circular cylinder in a supersonic perfect-gas stream is investigated in relation to the Reynolds number. It is shown that the entire Re-range can be subdivided into a number of intervals with their own characteristic features. In particular, the conditions for the generation and development of global separation are established. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 27–36, November–December, 1998. The study was carried out with the support of the Russian Foundation for Basic Research (project No. 95-01-01129a).  相似文献   

9.
The mechanisms of formation of hanging discontinuities, vortex dipoles, and vortex arrays in the wave wake behind a cylinder moving at a constant velocity in a stratified fluid are investigated using various schlieren methods. The existence of discontinuities is attributable to the distortion of the internal-wave phase pattern in the shear flow and to the varying stratification and subsequent interaction of the waves with the appearing nonuniformities. Hanging discontinuities and vortex systems are low-velocity analogs of shock waves. An analysis of the internal-wave pattern indicates that the values of the normal velocity component differ on the upper and lower edges of the discontinuities. A regime diagram for flows of this kind is given.  相似文献   

10.
Not only can mean pressures on a surface over which a fluid flows be accurately measured using a plastic tube which connects the surface tapping points to a remote pressure transducer, but the fluctuating pressures can also, provided that the transfer function, which relates the fluctuating pressures at the opposite ends of the tubing, is known. This technique was used here to measure the mean and fluctuating pressures on the surface of a circular cylinder subject to a cross-flowing airstream in the Reynolds number range from 6.8 × 104 to 9.6 × 104 based on cylinder diameter. Good agreement with published results gave confidence in the technique. Received: 15 April 1998/Accepted: 19 January 2000  相似文献   

11.
The problem of formation of spatially periodic structures on the frontal surface of a cylindrically blunted body set transversely in a hypersonic flow is studied. Within the framework of the model adopted, a possible mechanism of vortex structure generation on the frontal surface of the blunt body is proposed and confirmed by calculations; in this mechanism, the curved bow shock produces a vortex flow, while in its turn the vortex, which persists under weak dissipation, acts on the shock thus maintaining its curved shape. It is shown that the spatially periodic mode of hypersonic flow past a cylinder can exist in the case of a uniform incident flow and under homogeneous boundary conditions on the body surface.  相似文献   

12.
13.
A detailed experimental study on the flow characteristics of various vortex shedding regimes was carried out for the flow of non-Newtonian fluids around a cylinder. The fluids were aqueous solutions of carboxymethyl cellulose (CMC) and tylose at weight concentrations ranging from 0.1 to 0.6%, which had varying degrees of shear-thinning and elasticity. Two cylinders of 10 and 20 mm diameter were used in the experiments, defining an aspect ratio of 12 and 6 and producing blockages of 5 and 10%, respectively. The Reynolds number (Re) ranged from 50 to 9×103.Shear-thinning gave rise to a decrease of the cylinder boundary-layer thickness and to a reduction of the diffusion length (ld), which raised the Strouhal number, St. In the laminar shedding regime, a modified Strouhal number was successful at overlapping the shedding frequency variation with the Reynolds number for the various solutions. In contrast, fluid elasticity was found to increase the formation length (lf), and this contributed to a decrease of the Strouhal number. The overall effect of shear-thinning and elasticity was an increase in the Strouhal number.The increase in polymer concentration and the corresponding increase in fluid elasticity were responsible for the reduction of the critical Reynolds number marking the sudden decrease of the formation length, Relf. In the shear layer transition regime, the formation length and Strouhal number data collapsed onto single curves as function of a Reynolds number difference, which confirmed Coelho and Pinho (J. Non-Newtonian Fluid Mech. (2003), accepted for publication) finding that an important effect of fluid rheology was in changing the demarcations of the various flow regimes.  相似文献   

14.
Vortex formation mechanisms in the wake behind a sphere for 200 < Re < 380   总被引:1,自引:0,他引:1  
Direct numerical simulation and visualization of three-dimensional separated flows of a homogeneous incompressible viscous fluid are used to comprehensively describe different mechanisms of vortex formation behind a sphere at moderate Reynolds numbers (200 ≤ Re ≤ 380). For 200 < Re ≤ 270 a steady-state rectilinear double-filament wake is formed, while for Re > 270 it is a chain of vortex loops. The three unsteady periodic flow patterns corresponding to the 270 < Re ≤ 290, 290 < Re ≤ 320, and 320 < Re ≤ 380 ranges are characterized by different vortex formation mechanisms. Direct numerical simulation is based on the Meranzh (SMIF) method of splitting in physical factors with an explicit hybrid finite-difference scheme which possesses the following properties: secondorder approximation in the spatial variables, minimal scheme viscosity and dispersion, and monotonicity. Two different vortex identification techniques are used for visualizing the vortex structures within the wake.  相似文献   

15.
16.
The separation and shock wave formation on the aft-body of a hypersonic adiabatic circular cylinder were studied numerically using the open source software OpenFOAM. The simulations of laminar flow were performed over a range of Reynolds numbers (\(8\times 10^3 < Re < 8\times 10^4\)) at a free-stream Mach number of 5.9. Off-body viscous forces were isolated by controlling the wall boundary condition. It was observed that the off-body viscous forces play a dominant role compared to the boundary layer in displacement of the interaction onset in response to a change in Reynolds number. A modified free-interaction equation and correlation parameter has been presented which accounts for wall curvature effects on the interaction. The free-interaction equation was manipulated to isolate the contribution of the viscous–inviscid interaction to the overall pressure rise and shock formation. Using these equations coupled with high-quality simulation data, the underlying mechanisms resulting in Reynolds number dependence of the lip-shock formation were investigated. A constant value for the interaction parameter representing the part of the pressure rise due to viscous–inviscid interaction has been observed at separation over a wide range of Reynolds numbers. The effect of curvature has been shown to be the primary contributor to the Reynolds number dependence of the free-interaction mechanism at separation. The observations in this work have been discussed here to create a thorough analysis of the Reynolds number-dependent nature of the lip-shock.  相似文献   

17.
An algorithm is proposed to model, predict and control vortex shedding behind a circular cylindrical configuration. The main ingredients of the algorithm include multiple-feedback sensors, actuators (with zero net mass injection) and a control strategy. Along with the mass and momentum conservation equations, a control equation is implemented to enable the desired flow control goals. A number of sensors are chosen in the downstream of the body to report the state of the flow. The role of externally controllable actuators on the fluid flow patterns past a circular configuration is assessed. To enable, zero net mass injection, two simple rotary type mechanical actuators are located at 120°, right behind the main cylinder. The popular finite volume based SIMPLE scheme is employed for the numerical calculations. As a precursor, the scheme simulates flow past an isolated cylinder, which is validated over a moderate range of Reynolds numbers. The design parameters of interest such as Strouhal number, drag and lift coefficients etc are used for the purpose of validation. The simulated flow fields are compared against the flow visualization study, which clearly demonstrates the efficacy of the actuators at discrete levels of rotation. The basic character of the flow is completely modified at Uc/U = 2.0 and Re = 100, where a complete suppression of vortex shedding is observed. This is tantamount to complete control of all the global instability modes. Fictitious tracer particles are released to visualize the vortex structures in the form of streaklines. The results clearly demonstrate the effectiveness of a rather simple active control algorithm in suppressing the vortex structures. All the relevant fluid flow features of the bluff-body fluid mechanics under the influence of actuators are studied in the sub-critical Reynolds number range of Re = 100–300.  相似文献   

18.
An experimental study on the flow of non-Newtonian fluids around a cylinder was undertaken to identify and delimit the various shedding flow regimes as a function of adequate non-dimensional numbers. The measurements of vortex shedding frequency and formation length (lf) were carried out by laser-Doppler anemometry in Newtonian fluids and in aqueous polymer solutions of CMC and tylose. These were shear thinning and elastic at weight concentrations ranging from 0.1 to 0.6%. The 10 and 20 mm diameter cylinders (D) used in the experiments had aspect ratios of 12 and 6 and blockage ratios of 5 and 10%, respectively. The Reynolds number (Re*) was based on a characteristic shear rate of U/(2D) and ranged from 50 to 9×103 thus encompassing the laminar shedding, the transition and shear-layer transition regimes. Increasing fluid elasticity reduced the various critical Reynolds numbers (Reetr*, Relf*, Rebbp*) and narrowed the extent of the transition regime. For the 0.6% tylose solution the transition regime was even suppressed. On the other end, pseudoplasticity was found to be indirectly responsible for the observed reduction in Reotr*: it increases the Strouhal number which in turn increases the vortex filaments, precursors of the transition regime. Elasticity was better quantified by the elasticity number Re′/We than by the Weissenberg number. This elasticity number involves the calculation of the viscosity at a high characteristic shear rate, typical of the boundary layer, rather than at the average value (U/(2D)) used for the Reynolds number, Re*.  相似文献   

19.
The interaction between the wake of a rotor blade and a downstream cylinder holds the key to the understanding and control of electronic cooling fan noise. In this paper, the aerodynamic characteristics of a circular cylinder are experimentally studied in the presence of an upstream NACA 4412 airfoil for the cylinder-diameter-based Reynolds numbers of Red=2,100–20,000, and the airfoil chord-length-based Reynolds numbers of Rec=14,700–140,000. Lift and drag fluctuations on the cylinder, and the longitudinal velocity fluctuations of the flow behind the cylinder were measured simultaneously using a load cell and two hot wires, respectively. Data analysis shows that unsteady forces on the cylinder increase significantly in the presence of the airfoil wake. The dependence of the forces on two parameters is investigated, that is, the lateral distance (T) between the airfoil and the cylinder, and the Reynolds number. The forces decline quickly as T increases. For Rec<60,000, the vortices shed from the upstream airfoil make a major contribution to the unsteady forces on the cylinder compared to the vortex shedding from the cylinder itself. For Rec>60,000, no vortices are generated from the airfoil, and the fluctuating forces on the cylinder are caused by its own vortex shedding.  相似文献   

20.
The behaviour of vortex structures shed from a heated cylinder is experimentally investigated by means of 2-D particle tracking velocimetry. Within this investigation the ReD number was chosen to be 73. The RiD number, the dimensionless number which presents the relative importance of the induced heat, varies between 0 and 1. The experiments were carried out in a large towing tank where the disturbances caused by boundary layers could be minimised. The results show that for small RiD numbers the induced heat results in a deflection of the vortex street in negative y-direction. Within the vortex street a linking of two subsequently shed vortices occurs where the vortex shed from the lower half of the cylinder rotates around the vortex shed from the upper half. These phenomena are assumed to be caused by a strength difference between the vortices shed from the upper half of the cylinder and the lower half. For RiD=1 the effect of the induced heat and buoyancy becomes even more pronounced resulting in a more upwards directed vortex street.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号