首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compressible Navier–Stokes–Korteweg system is considered on \({\mathbb{R}^3}\) when the external force is periodic in the time variable. The existence of a time periodic solution is proved for a sufficiently small external force by using the time-T-map related to the linearized problem around the motionless state with constant density and absolute temperature. The spectral properties of the time-T-map is investigated by a potential theoretic method and an energy method in some weighted spaces. The stability of the time periodic solution is proved for sufficiently small initial perturbations. It is also shown that the \({L^\infty}\) norm of the perturbation decays as time goes to infinity.  相似文献   

2.
For the Landau–Poisson system with Coulomb interaction in ${\mathbb{R}^{3}_{x}}$ R x 3 , we prove the global existence, uniqueness, and large time convergence rates to the Maxwellian equilibrium for solutions which start out sufficiently close.  相似文献   

3.
The compressible Navier–Stokes–Poisson (NSP) system is considered in ${\mathbb {R}^3}The compressible Navier–Stokes–Poisson (NSP) system is considered in \mathbb R3{\mathbb {R}^3} in the present paper, and the influences of the electric field of the internal electrostatic potential force governed by the self-consistent Poisson equation on the qualitative behaviors of solutions is analyzed. It is observed that the rotating effect of electric field affects the dispersion of fluids and reduces the time decay rate of solutions. Indeed, we show that the density of the NSP system converges to its equilibrium state at the same L 2-rate (1+t)-\frac 34{(1+t)^{-\frac {3}{4}}} or L -rate (1 + t)−3/2 respectively as the compressible Navier–Stokes system, but the momentum of the NSP system decays at the L 2-rate (1+t)-\frac 14{(1+t)^{-\frac {1}{4}}} or L -rate (1 + t)−1 respectively, which is slower than the L 2-rate (1+t)-\frac 34{(1+t)^{-\frac {3}{4}}} or L -rate (1 + t)−3/2 for compressible Navier–Stokes system [Duan et al., in Math Models Methods Appl Sci 17:737–758, 2007; Liu and Wang, in Comm Math Phys 196:145–173, 1998; Matsumura and Nishida, in J Math Kyoto Univ 20:67–104, 1980] and the L -rate (1 + t)p with p ? (1, 3/2){p \in (1, 3/2)} for irrotational Euler–Poisson system [Guo, in Comm Math Phys 195:249–265, 1998]. These convergence rates are shown to be optimal for the compressible NSP system.  相似文献   

4.
In this paper we study the regularity of viscosity solutions to the following Hamilton–Jacobi equations
$\partial_{t}u+H(D_{x}u)=0\quad\hbox{in }\Omega\subset{\mathbb R}\times{\mathbb R}^{n}.$
In particular, under the assumption that the Hamiltonian \({H\in C^2({\mathbb R}^n)}\) is uniformly convex, we prove that D x u and ? t u belong to the class SBV loc (Ω).
  相似文献   

5.
We study the so-called damped Navier–Stokes equations in the whole 2D space. The global well-posedness, dissipativity and further regularity of weak solutions of this problem in the uniformly-local spaces are verified based on the further development of the weighted energy theory for the Navier–Stokes type problems. Note that any divergent free vector field ${u_0 \in L^\infty(\mathbb{R}^2)}$ is allowed and no assumptions on the spatial decay of solutions as ${|x| \to \infty}$ are posed. In addition, applying the developed theory to the case of the classical Navier–Stokes problem in ${\mathbb{R}^2}$ , we show that the properly defined weak solution can grow at most polynomially (as a quintic polynomial) as time goes to infinity.  相似文献   

6.
In this paper, a computational model for the simulation of coupled electrokinetic and hydromechanical flow in a multiphase domain is introduced. Particular emphasis is placed on modeling $\text{ CO}_{2}$ flow in a deformed, unsaturated geologic formation and its associated streaming potential. The governing field equations are derived based on the averaging theory and solved numerically based on a mixed discretization scheme. The standard Galerkin finite element method is utilized to discretize the deformation and the diffusive dominant field equations, and the extended finite element method, together with the level-set method, is utilized to discretize the advective dominant field equations. The level-set method is employed to trace the $\text{ CO}_{2}$ plume front, and the extended finite element method is employed to model the high gradient in the saturation field front. This mixed discretization scheme leads to a highly convergent system, giving a stable and effectively mesh-independent model; furthermore, it minimizes the number of degrees of freedom, making the numerical scheme computationally efficient. The capability of the proposed model is evaluated by verification and numerical examples. Effects of the formation stiffness on the $\text{ CO}_{2}$ flow and the salinity content on the streaming potential are discussed.  相似文献   

7.
The Vlasov–Poisson–Boltzmann System governs the time evolution of the distribution function for dilute charged particles in the presence of a self-consistent electric potential force through the Poisson equation. In this paper, we are concerned with the rate of convergence of solutions to equilibrium for this system over \mathbb R3{\mathbb R^3}. It is shown that the electric field, which is indeed responsible for the lowest-order part in the energy space, reduces the speed of convergence, hence the dispersion of this system over the full space is slower than that of the Boltzmann equation without forces; the exact L 2-rate for the former is (1 + t)−1/4 while it is (1 + t)−3/4 for the latter. For the proof, in the linearized case with a given non-homogeneous source, Fourier analysis is employed to obtain time-decay properties of the solution operator. In the nonlinear case, the combination of the linearized results and the nonlinear energy estimates with the help of the proper Lyapunov-type inequalities leads to the optimal time-decay rate of perturbed solutions under some conditions on initial data.  相似文献   

8.
We present an example of a contraction diffeomorphism in infinite dimensions that is not -linearizable, and we construct a regular ordinary differential equation in a Hilbert space whose time-one map is that diffeomorphism. With this we have an example of an asymptotically stable ODE that is not -conjugate to its linear part.  相似文献   

9.
The dynamical problem of a brake-like mechanical system composed of an elastic cylindrical tube with Coulomb's friction in contact with a rigid and rotating cylinder is considered. This model problem enables us to give an example of non-trivial periodic solutions in the form of stick–slip or stick–slip–separation waves propagating on the contact surface. A semi-analytical analysis of stick–slip waves is obtained when the system of governing equations is reduced by condensation to a simpler system involving only the contact displacements. This reduced system, of only one space variable in addition to time, can be solved almost analytically and gives some interesting informations on the existence and the characteristics of stick–slip waves such as the wave numbers on the circumference, stick and slip proportions, wave celerities, tangential and normal forces. It is shown in particular that the stick–slip–separation solutions would occur for small normal pressures or high rotational speeds. Since the analytical discussion becomes cumbersome in this case, a second approach based on numerical analysis by the finite element method is performed. The existence and the characteristics of stick–slip and stick–slip–separation waves are discussed numerically.  相似文献   

10.
It is known that a transform of Liouville type allows one to pass from an equation of the Korteweg–de Vries (K–dV) hierarchy to a corresponding equation of the Camassa–Holm (CH) hierarchy (Beals et al., Adv Math 154:229–257, 2000; McKean, Commun Pure Appl Math 56(7):998–1015, 2003). We give a systematic development of the correspondence between these hierarchies by using the coefficients of asymptotic expansions of certain Green’s functions. We illustrate our procedure with some examples.  相似文献   

11.
Bulk metallic glass with composition Ti40Zr25Ni8Cu9Be18 exhibits considerably high compressive yield stress, significant plasticity (with a concomitant vein-like fracture morphology) and relatively low density. Yielding and intrinsic plasticity of this alloy are discussed in terms of its thermal and elastic properties. An influence of normal stresses acting on the shear plane is evidenced by: (i) the fracture angle (<45°) and (ii) finite-element simulations of nanoindentation curves, which require the use of a specific yield criterion, sensitive to local normal stresses acting on the shear plane, to properly match the experimental data. The ratio between hardness and compressive yield strength (constraint factor) is analyzed in terms of several models and is best adjusted using a modified expanding cavity model incorporating a pressure-sensitivity index defined by the Drucker–Prager yield criterion. Furthermore, comparative results from compression tests and nanoindentation reveal that deformation also causes strain softening, a phenomenon which is accompanied with the occurrence of serrated plastic flow and results in a so-called indentation size effect (ISE). A new approach to model the ISE of this metallic glass using the free volume concept is presented.  相似文献   

12.
This article examines the synchronization performance between two fractional-order systems, viz., the Ravinovich?CFabrikant chaotic system as drive system and the Lotka?CVolterra system as response system. The chaotic attractors of the systems are found for fractional-order time derivatives described in Caputo sense. Numerical simulation results which are carried out using Adams?CBoshforth?CMoulton method show that the method is reliable and effective for synchronization of nonlinear dynamical evolutionary systems. Effects on synchronization time due to the presence of fractional-order derivative are the key features of the present article.  相似文献   

13.
Geological storage of \(\hbox {CO}_{2}\) in deep saline aquifers is achieved by injecting \(\hbox {CO}_{2}\) into the aquifers and displacing the brine. Although most of the brine is displaced, some residual groundwater remains in the rock pores. We conducted experiments to investigate factors that influence how much of this residual water remains after \(\hbox {CO}_{2}\) is injected. A rock sample was saturated with brines of two different salts. Supercritical \(\hbox {CO}_{2}\) was injected into the samples at aquifer temperature and pressure, and the displaced water and water–gas mixtures were collected and measured. The results show that deionized water drains more completely than either of the two brines, and NaCl brine drains more completely than \(\hbox {CaCl}_{2}\) brine. The ranking of the irreducible water saturation at the end of the experiment is deionized \(\hbox {water}<\hbox {NaCl brine } <\hbox {CaCl}_{2}\) brine. The process of drainage can be divided into three stages according to the drainage flow rates; the Pushing Drainage, Portable Drainage, and Dissolved Drainage stages. This paper proposed a capillary model which is used to interpret the mechanisms that characterize these three stages.  相似文献   

14.
The Cahn–Hilliard–Navier–Stokes system is based on a well-known diffuse interface model and describes the evolution of an incompressible isothermal mixture of binary fluids. A nonlocal variant consists of the Navier–Stokes equations suitably coupled with a nonlocal Cahn–Hilliard equation. The authors, jointly with P. Colli, have already proven the existence of a global weak solution to a nonlocal Cahn–Hilliard–Navier–Stokes system subject to no-slip and no-flux boundary conditions. Uniqueness is still an open issue even in dimension two. However, in this case, the energy identity holds. This property is exploited here to define, following J.M. Ball’s approach, a generalized semiflow which has a global attractor. Through a similar argument, we can also show the existence of a (connected) global attractor for the convective nonlocal Cahn–Hilliard equation with a given velocity field, even in dimension three. Finally, we demonstrate that any weak solution fulfilling the energy inequality also satisfies a dissipative estimate. This allows us to establish the existence of the trajectory attractor also in dimension three with a time dependent external force.  相似文献   

15.
In this paper, via generalized bilinear forms, we consider the (\(2+1\))-dimensional bilinear p-Sawada–Kotera (SK) equation. We derive analytical rational solutions in terms of positive quadratic functions. Through applying the dependent transformation, we present a class of lump solutions of the (\(2+1\))-dimensional SK equation. Those rationally decaying solutions in all space directions exhibit two kinds of characters, i.e., bright lump wave (one peak and two valleys) and bright–dark lump wave (one peak and one valley). In addition, we also obtain three families of bright–dark lump wave solutions to the nonlinear p-SK equation for \(p=3\).  相似文献   

16.
Li  Long-Xing 《Nonlinear dynamics》2022,107(4):3779-3790
Nonlinear Dynamics - In this paper, some novel lump solutions and interaction phenomenon between lump and kink M-soliton are investigated. Firstly, we study the evolution and degeneration behaviour...  相似文献   

17.
In this paper, we present results of full band structures for two-dimensional piezoelectric phononic crystals with {1–3} connectivity family. The plane-wave-expansion (PWE) method is applied to the theoretical derivation of secular equations of the two polarization modes: a transverse polarization mode and a mixed (longitudinal-transverse) polarization mode. And the band structures of the two modes for both the case of piezoelectric rods embedded in a polymer matrix and the case of polymer rods embedded in a piezoelectric matrix are calculated for two different cross-sections of the rods, i.e., circular and square, considering the practical fabrication of phononic crystals. We reveal the existence of several very large complete band gaps in a material of practical interest such as PZT rods reinforced polythene composite. The effects of shapes and filling fraction of the rods on band gaps are discussed in detail. The existence of these gaps in relation to the physical parameters of the constituent materials involved is studied. Understanding the band structures of piezoelectric phononic crystals can give some information for improvements in the design of acoustic transducers.  相似文献   

18.
Nonlinear Dynamics - We study two (3 $$+$$ 1)-dimensional generalized equations, namely the Kadomtsev–Petviashvili–Boussinesq equation and the B-type...  相似文献   

19.
Based on the mass transfer theory, a new mass transfer model of ion-exchange process on zeolite under liquid film diffusion control is established, and the kinetic curves and the mass transfer coefficients of –K+ ion-exchange under different conditions were systemically determined using the shallow-bed experimental method. The results showed that the –K+ ion-exchange rates and transfer coefficients are directly proportional to solution flow rate and temperature, and inversely proportional to solution viscosity and the size of zeolite granules. It also showed that the transfer coefficient is not influenced by the ion concentrations. For a large ranges of operational conditions including temperatures (10 − 75°C), flow rates (0.031 m s−1 −0.26 m s−1), liquid viscosities (1.002 × 10−3 N s m−2 − 4.44 × 10−3 N s m−2), and zeolite granular sizes (0.2 − 1.45 mm), the average mass transfer coefficients calculated by the model agree with the experimental results very well.  相似文献   

20.
We investigate a reaction–diffusion–advection equation of the form \(u_t-u_{xx}+\beta u_x=f(u)\) \((t>0,\,0<x<h(t))\) with mixed boundary condition at \(x=0\) and Stefan free boundary condition at \(x=h(t)\). Such a model may be applied to describe the dynamical process of a new or invasive species adopting a combination of random movement and advection upward or downward along the resource gradient, with the free boundary representing the expanding front. The goal of this paper is to understand the effect of advection environment and no flux across the left boundary on the dynamics of this species. For the case \(|\beta |<c_0\), we first derive the spreading–vanishing dichotomy and sharp threshold for spreading and vanishing, and then provide a much sharper estimate for the spreading speed of h(t) and the uniform convergence of u(tx) when spreading happens. For the case \(|\beta |\ge c_0\), some results concerning virtual spreading, vanishing and virtual vanishing are obtained. Here \(c_0\) is the minimal speed of traveling waves of the differential equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号