首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We consider the problem of numerical simulation of the scattering of acoustic and electromagnetic waves on a cube whose edge ha s length up to 8 wave lengths of the incident wave. We describe a scheme using a representation of the boundary integral equation in the form of an operator convolution equation on the symmetry group of the cube. We compare the results of numerical solution of integral equations of first and second kind for scalar and vector problems of diffraction of a plane wave on a cube. Translated fromProblemy Matematicheskoi Fiziki, 1998, pp. 36–45.  相似文献   

2.
We study the numerical solution of a linear hypersingular integral equation arising when solving the Neumann boundary value problem for the Laplace equation by the boundary integral equation method with the solution represented in the form of a double layer potential. The integral in this equation is understood in the sense of Hadamard finite value. We construct quadrature formulas for the integral occurring in this equation based on a triangulation of the surface and an application of the linear approximation to the unknown function on each of the triangles approximating the surface. We prove the uniform convergence of the quadrature formulas at the interpolation nodes as the triangulation size tends to zero. A numerical solution scheme for this integral equation based on the suggested quadrature formulas and the collocation method is constructed. Under additional assumptions about the shape of the surface, we prove a uniform estimate for the error in the numerical solution at the interpolation nodes.  相似文献   

3.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises in the solution of the Neumann boundary value problem for the Laplace equation with a representation of a solution in the form of a double-layer potential. We consider the case in which the interior or exterior boundary value problem is solved in a domain; whose boundary is a smooth closed surface, and an integral equation is written out on that surface. For the integral operator in that equation, we suggest quadrature formulas like the method of vortical frames with a regularization, which provides its approximation on the entire surface for the use of a nonstructured partition. We construct a numerical scheme for the integral equation on the basis of suggested quadrature formulas, prove an estimate for the norm of the inverse matrix of the related system of linear equations and the uniform convergence of numerical solutions to the exact solution of the hypersingular integral equation on the grid.  相似文献   

4.
Transverse magnetic (TM) scattering of an electromagnetic wave from a periodic dielectric diffraction grating can mathematically be described by a volume integral equation.This volume integral equation, however, in general fails to feature a weakly singular integral operator. Nevertheless, after a suitable periodization, the involved integral operator can be efficiently evaluated on trigonometric polynomials using the fast Fourier transform (FFT) and iterative methods can be used to solve the integral equation. Using Fredholm theory, we prove that a trigonometric Galerkin discretization applied to the periodized integral equation converges with optimal order to the solution of the scattering problem. The main advantage of this FFT-based discretization scheme is that the resulting numerical method is particularly easy to implement, avoiding for instance the need to evaluate quasiperiodic Green’s functions.  相似文献   

5.
We consider the scattering of time-harmonic electromagnetic waves from a chiral medium. It is known for the Drude–Born–Fedorov model that the forward scattering problem can be described by an integro-differential equation. In this paper we study a Galerkin finite element approximation for this integro-differential equation. Our Galerkin scheme, which relies on a suitable periodization of the integral equation, enables the use of the fast Fourier transform and a simple numerical implementation. We establish a quasi-optimal convergence analysis for the Galerkin method. Explicit formulas for the discrete scheme are also provided.  相似文献   

6.
We propose a new integral equation formulation to characterize and compute transmission eigenvalues in electromagnetic scattering. As opposed to the approach that was recently developed by Cakoni, Haddar and Meng (2015) which relies on a two‐by‐two system of boundary integral equations, our analysis is based on only one integral equation in terms of the electric‐to‐magnetic boundary trace operator that results in a simplification of the theory and in a considerable reduction of computational costs. We establish Fredholm properties of the integral operators and their analytic dependence on the wave number. Further, we use the numerical algorithm for analytic nonlinear eigenvalue problems that was recently proposed by Beyn (2012) for the numerical computation of the transmission eigenvalues via this new integral equation.  相似文献   

7.
We consider a linear integral equation with a supersingular integral treated in the sense of the Hadamard finite value, which arises in the solution of the Neumann boundary value problem for the Laplace equation with the representation of the solution in the form of a doublelayer potential. We consider the case in which the exterior boundary value problem is solved outside a plane surface (a screen). For the integral operator in the above-mentioned equation, we suggest quadrature formulas of the vortex loop method with regularization, which provide its approximation on the entire surface when using an unstructured partition. In the problem in question, the derivative of the unknown density of the double-layer potential, as well as the errors of quadrature formulas, has singularities in a neighborhood of the screen edge. We construct a numerical scheme for the integral equation on the basis of the suggested quadrature formulas and prove an estimate for the norm of the inverse matrix of the resulting system of linear equations and the uniform convergence of the numerical solutions to the exact solution of the supersingular integral equation on the grid.  相似文献   

8.
In this work, we consider the method of non-linear boundary integral equation for solving numerically the inverse scattering problem of obliquely incident electromagnetic waves by a penetrable homogeneous cylinder in three dimensions. We consider the indirect method and simple representations for the electric and the magnetic fields in order to derive a system of five integral equations, four on the boundary of the cylinder and one on the unit circle where we measure the far-field pattern of the scattered wave. We solve the system iteratively by linearizing only the far-field equation. Numerical results illustrate the feasibility of the proposed scheme.  相似文献   

9.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises when solving the Neumann boundary value problem for the Laplace equation with the use of the representation of the solution in the form of a double layer potential. We study the case in which an exterior or interior boundary value problem is solved in a domain whose boundary is a smooth closed surface and the integral equation is written out on that surface. For the numerical solution of the integral equation, the surface is approximated by spatial polygons whose vertices lie on the surface. We construct a numerical scheme for solving the integral equation on the basis of such an approximation to the surface with the use of quadrature formulas of the type of the method of discrete singularities with regularization. We prove that the numerical solutions converge to the exact solution of the hypersingular integral equation uniformly on the grid.  相似文献   

10.
The main difficulty in numerical solution of integral equations of electrodynamics is associated with the need to solve a high-order system of linear equations with a dense matrix. It is therefore relevant to develop numerical methods that lead to linear equation systems of lower order at the cost of more complex evaluation of the coefficients. In this article we propose a method for solving linear equations of electrodynamics which is a modification of the integral current method. The main distinctive feature of the proposed method is double integration of the electric Green’s tensor in the process of algebraization of the original integral equation. The solutions of the system of linear equations are thus integral means of the electric field inside the anomaly constructed by the proposed transformation formula. We prove convergence and derive error bounds for both the solution of the integral equation and the electromagnetic field components evaluated from approximate transformation formulas.  相似文献   

11.
We present a high‐order shifted Gegenbauer pseudospectral method (SGPM) to solve numerically the second‐order one‐dimensional hyperbolic telegraph equation provided with some initial and Dirichlet boundary conditions. The framework of the numerical scheme involves the recast of the problem into its integral formulation followed by its discretization into a system of well‐conditioned linear algebraic equations. The integral operators are numerically approximated using some novel shifted Gegenbauer operational matrices of integration. We derive the error formula of the associated numerical quadratures. We also present a method to optimize the constructed operational matrix of integration by minimizing the associated quadrature error in some optimality sense. We study the error bounds and convergence of the optimal shifted Gegenbauer operational matrix of integration. Moreover, we construct the relation between the operational matrices of integration of the shifted Gegenbauer polynomials and standard Gegenbauer polynomials. We derive the global collocation matrix of the SGPM, and construct an efficient computational algorithm for the solution of the collocation equations. We present a study on the computational cost of the developed computational algorithm, and a rigorous convergence and error analysis of the introduced method. Four numerical test examples have been carried out to verify the effectiveness, the accuracy, and the exponential convergence of the method. The SGPM is a robust technique, which can be extended to solve a wide range of problems arising in numerous applications. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 307–349, 2016  相似文献   

12.
In this paper we consider time-dependent electromagnetic scattering problems from conducting objects. We discretize the time-domain electric field integral equation using Runge–Kutta convolution quadrature in time and a Galerkin method in space. We analyze the involved operators in the Laplace domain and obtain convergence results for the fully discrete scheme. Numerical experiments indicate the sharpness of the theoretical estimates.  相似文献   

13.
本文中我们考虑一类二阶非线性常微分方程的边值问题的迎风差分格式.我们运用奇异摄动方法构造了该迎风差分方程解的渐近近似,并利用指数二分性理论证明了有一个低阶方程其解是该迎风方程式的在边界外的一个良好近似.我们还构造了校正项,使校正项与低阶方程的解之和是一个渐近近似.最后一些数值例子用于显示本文方法的应用.  相似文献   

14.
We discuss Cahn’s time cone method modelling phase transformation kinetics. The model equation by the time cone method is an integral equation in the space-time region. First, we reduce it to a system of hyperbolic equations, and in the case of odd spatial dimensions, the reduced system is a multiple hyperbolic equation. Next, we propose a numerical method for such a hyperbolic system. By means of alternating direction implicit methods, numerical simulations for practical forward problems are implemented with satisfactory accuracy and efficiency. In particular, in the three dimensional case, our numerical method on the basis of reduced multiple hyperbolic equation is fast.  相似文献   

15.
In this study, we propose one of the new techniques used in solving numerical problems involving integral equations known as the Sinc-collocation method. This method has been shown to be a powerful numerical tool for finding fast and accurate solutions. So, in this article, a mixed Volterra-Fredholm integral equation which has been appeared in many science an engineering phenomena is discredited by using some properties of the Sinc-collocation method and Sinc quadrature rule to reduce integral equation to some algebraic equations. Then exponential convergence rate of this numerical technique is discussed by preparing a theorem. Finally, some numerical examples are included to demonstrate the validity and applicability of the convergence theorem and numerical scheme.  相似文献   

16.
R. Chapko 《PAMM》2002,1(1):424-425
We consider initial boundary value problems for the homogeneous differential equation of hyperbolic or parabolic type in the unbounded two‐ or three‐dimensional spatial domain with the homogeneous initial conditions and with Dirichlet or Neumann boundary condition. The numerical solution is realized in two steps. At first using the Laguerre transformation or Rothe's method with respect to the time variable the non‐stationary problem is reduced to the sequence of boundary value problems for the non‐homogeneous Helmholtz equation. Further we construct the special integral representation for solutions and obtain the sequence of boundary integral equations (without volume integrals). For the full‐discretization of integral equations we propose some projection methods.  相似文献   

17.
We consider the scalar problem on the diffraction of a plane wave on a system of two screens with boundary conditions of the first and the second kind and a solid inhomogeneous body in the semiclassical setting. The original boundary value problem for the Helmholtz equation is reduced to a system of singular integral equations over the body domain and the screen surfaces. We prove the equivalence of the integral and differential statements of the problem, the solvability of the system of integral equations in Sobolev spaces, and the smoothness of its solutions. To solve the integral equations approximately, we use the Bubnov-Galerkin method; we introduce basis functions on the body and the screens and prove the consistency and convergence of the numerical method.  相似文献   

18.
We study an optimal control problem of a system governed by a linear elliptic equation, with pointwise control constraints and pointwise and non-local (integral) state constraints. We construct a finite-difference approximation of the problem, we prove the existence and the convergence of the approximate solutions to the exact solution. We construct and study mesh saddle point problem and its iterative solution method and analyze the results of numerical experiments.  相似文献   

19.
In this paper, Multiquadric quasi-interpolation method is used to approximate fractional integral equations and fractional differential equations. Firstly, we construct two operators for approximating the Hadamard integral-differential equation based on quasi interpolators, and verify their properties and order of convergence. Secondly, we obtain that the approximation order of the integral scheme is 3, and the approximation order of the differential scheme is $3-\mu$ for $\mu(0<\mu<1)$ order fractional Hadamard derivative. Finally, The results of numerical experiments show that the numerical results are in greement with the theoretical analysis.  相似文献   

20.
This paper presents a volume integral equation method for an electromagnetic scattering problem for three-dimensional Maxwell's equations in the presence of a biperiodic, anisotropic, and possibly discontinuous dielectric scatterer. Such scattering problem can be reformulated as a strongly singular volume integral equation (i.e., integral operators that fail to be weakly singular). In this paper, we firstly prove that the strongly singular volume integral equation satisfies a Gårding-type estimate in standard Sobolev spaces. Secondly, we rigorously analyze a spectral Galerkin method for solving the scattering problem. This method relies on the periodization technique of Gennadi Vainikko that allows us to efficiently evaluate the periodized integral operators on trigonometric polynomials using the fast Fourier transform (FFT). The main advantage of the method is its simple implementation that avoids for instance the need to compute quasiperiodic Green's functions. We prove that the numerical solution of the spectral Galerkin method applied to the periodized integral equation converges quasioptimally to the solution of the scattering problem. Some numerical examples are provided for examining the performance of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号