首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titania sols, gels and nanopowders have been produced by the controlled hydrolysis of tetraisopropyltitanate (TPT) in sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles. Particle formation and aggregation have been investigated by photon correlation spectroscopy, the crystal phases by FT-Raman spectroscopy, and the crystallite dimensions of the precipitates by transmission electron microscopy. Nanoparticles could be produced at relatively high Ti(IV) concentrations (up to 0.05 mol dm–3). These nanoparticles aggregated into sols, with colloid sizes of 20–300 nm, eventually forming gelatinous precipitates. The kinetics of particle formation and aggregation were controlled by varying the primary process parameters [TPT], [H2O]/[AOT] (w0), and [H2O]/[Ti(IV)] (R), yielding a range of products including stable, transparent sols, precipitates and monolithic gels. The aggregation kinetics and physical properties of the sols depended strongly on w0. Different titania phases were produced, depending on w0; w0 6 yielded amorphous particles, while w0 10 produced anatase. The dimensions of the crystallites were comparable to those of the parent reverse micelles. A model was developed to interpret the effect of the primary process parameters on colloidal stability: (1) nucleation to form primary crystallites occurs by rapid hydrolysis and condensation reactions within the reverse micelle and (2) subsequent colloidal growth by aggregation occurs by reverse micellar exchange, where the rate of growth is governed by electrostatic and steric stability factors which increase as [AOT]/[TPT] (S) and residual [H2O]/[AOT] (wr) increase.  相似文献   

2.
The thermodynamics of reverse micelle formation from an ionic surfactant, sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol OT, AOT), in hexane is studied by molecular dynamics simulation. A change in the Gibbs free energy upon the addition of one AOT molecule to a reverse micelle is calculated as depending on aggregation number N by the thermodynamic integration method. This dependence has a minimum at N ≈ 20 and maximum at N ≈ 35 and predetermines the monotonically decreasing character of the standard chemical potential of AOT in a micelle with the increase of the aggregation number. The simulation results predict the formation of reverse AOT micelles with an average aggregation number of ≈30, which is in good agreement with experimental data.  相似文献   

3.
Terahertz time-domain spectroscopy has been carried out for AOT/isooctane reverse micellar solution with myoglobin at the water-to-surfactant molar ratios (w0) of 0.2 and 4.4. The amplitude of the absorption spectrum increases with increasing the protein concentration at w0 = 0.2, whereas it decreases at w0 = 4.4. The molar extinction coefficients of the protein-filled reverse micelle, and the constituents, i.e., myoglobin, water, and AOT, have been derived by use of the structural parameters of the micellar solution. The experimental results are interpreted in terms of hydration onto the protein and surfactant in the reverse micelle.  相似文献   

4.
The photophysical parameters of two probes with largely different hydrophobic character, namely, coumarin 1 and coumarin 343, are investigated in sodium bis‐(2‐ethylhexyl)sulfosuccinate (AOT)/hexane/water reverse micelles at various water/AOT molar ratio w0. Correlation of photophysical parameters such as fluorescence quantum yield, fluorescence lifetime, and emission maxima with w0 indicate distinctly different trends below and above w0≈7 for both probes. The variation of the average rotational correlation times obtained from fluorescence anisotropy decays for both probes in reverse micelles further corroborate the above observation. Similar studies were also performed in nonaqueous reverse micelles with acetonitrile as polar solvent. Similar to aqueous reverse micelles, breaks in the photophysical parameters with increasing acetonitrile/AOT molar ratios w0 were also observed in these cases, although at a much lower w0 value of 3. The present results indicate that around w0≈7 for aqueous reverse micelles (and around w0≈3 for nonaqueous reverse micelles) a distinct change occurs in the probe microenvironment, which is rationalized on the basis of the relative populations of interfacial and core water. We propose that until the ionic head groups and counterions are fully solvated by polar solvents, that is, up to w0≈7 (or w0≈3), the interfacial water population dominates. Above these molar ratios coalescence of excess water molecules with each other to form truncated H‐bonded water clusters leads to a sizable population of core water. This is further substantiated by changes in the IR absorption spectra for the O? D stretching mode of diluted D2O in reverse micelles with varying w0. Critical comparison of the present results with relevant literature reports provide clear support for the proposals made on water structure in reverse micelles. The role of relative size of the probe and the reverse micelles for differences in polar solvent to AOT ratios (w0=7 and w0=3) in the observed breaks in the two types of reverse micelles is also discussed.  相似文献   

5.
A thermodynamic treatment of the volumetric behavior of surfactant mixtures in water have been developed on the basis of the thermodynamic treatment of mixed micelle by Motomura et al. Densities of aqueous solutions of mixtures of decyltrimethylammonium bromide (DeTAB) and dodecyltrimethylammonium bromide (DTAB) have been measured as a function of total molality at constant compositions. The apparent molar volumes of the mixtures have been derived from the density data and the mean partial molar volume of monomeric surfactant mixture V t w , the molar volume of mixed micelle VM/N t M , the voluem of formation of mixed micelle W M V, and the composition of surfactant in the mixed micelle have been evaluated. The V t W , VM/N t M , and W M V have been observed to depend on the composition. The linear dependence of V t W and VM/N t M on the composition indicates that the mixing of DeTAB and DTAB is ideal both in the monomeric and micellar states. This has been confirmed further by the shape of the critical micelle concentration vs. composition curves.  相似文献   

6.
Yeast alcohol dehydrogenase (YADH) showed substantial decrease in its catalytic activity due to the strong electrostatic interaction between the head groups of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and YADH in AOT reverse micelles. However, the catalytic activity of YADH in a nonionic reverse micellar interface (GGDE/TX-100) obtained from a functional nonionic surfactant N-gluconyl glutamic acid didecyl ester (GGDE) and Triton X-100 (TX-100) was higher than that in AOT reverse micelle under the respective optimum conditions. A comparison of the kinetic parameters showed that the turnover number kcat in GGDE/TX-100 reverse micelle was 1.4 times as large as that in AOT reverse micelle, but the Michaelis constants in AOT reverse micelle for ethanol KmB was twice and for coenzyme NAD+ KmA was 5 times higher than their counterparts in GGDE/TX-100 reverse micelle. For the conversion of ethanol, the smaller KmB and larger kcat in GGDE/TX-100 reverse micelle resulted in higher catalytic efficiency kcat/KmB. The stability of YADH in GGDE/TX-100 reverse micelle was also found to be better than that in AOT reverse micelle. They were mainly attributed to the absence of electric charge on the head groups of GGDE and TX-100 in the GGDE/TX-100 reverse micelle.   相似文献   

7.
The effect of the chain length on the conformation of oligo-L-lysines (Lys-n, n= 9, 12 and 15) was examined in the reversed micelles of bis(2-ethylhexyl)sodium sulfosuccinate (AOT) in octane by the circular dichroism (CD) measurements. These oligomers seem to take a-structure in these systems. The structure-inducing effect of the reversed micelles is enhanced as the molar ratio of water to AOT (w0=[H2O]/[AOT]) becomes smaller. On the other hand, in the aqueous solutions the oligomers having 12 and 15 residues show the conformational transition from random coil to-helical structure by the addition of AOT, but the short oligomer of 9 residues does not show such a conformational transition.  相似文献   

8.
The conformation of various basic poly (-amino acid)s was investigated by CD measurements in aqueous solutions containing bis (2-ethylhexyl)sodium sulfosuccinate (AOT) as well as in the AOT reversed micelles. The addition of AOT into an aqueous solution of poly(L-lysine) induces the conformational transition from coil to ordered structure, followed by aggregation. On the other hand, poly(L-lysine) assumes-structure in the reversed micelles at low wovalue (wo=[H2O]/[AOT]). Similarly to poly(L-lysine), poly(L-ornithine) takes an ordered structure in the aqueous solution containing AOT and-structure in the reversed micelles. In this case, however, these ordered structures are not so stable, compared with that of poly(L-lysine). Poly(L-arginine) undergoes the conformational transition from coil to helix by addition of AOT into the aqueous solution. Further addition of AOT allows transformation into-structure. Copoly(L-lysyl-L-leucine) with 63% leucine residue was shown to take a stable helical conformation even in pure water. In the reversed micelles, however, this ordered structure is significantly changed probably because the hydrophobic interaction among the leucyl residues is lowered in the reversed micelles.  相似文献   

9.
Solubilization of pepsin by bis(2-ethylhexyl) sodium sulfosuccinate (AOT) and cetyltrimethylammonium bromide (CTAB) reverse micelles has been studied at 20C. Isooctane, cyclohexane and hexane were used as solvents, and n-butanol, amyl alcohol and hexanol were used as cosurfactants for CTAB. AOT concentrations were varied from 50 to 500 mM and pepsin concentrations were varied from 2 to 10 mg-mL–1. At 250 mM, AOT can solubilize more than 85% of the Pepsin in each solvent. The effect of aqueous-phase pH on the solubilization of Pepsin has been studied from pH 1 to 8. The maximum solubilization of pepsin was observed below the isoelectric point (pI = 1.5) of the protein at pH 1.0 with 300 mM of AOT. The CTAB solutions were prepared by dissolving CTAB in isooctane with varying concentrations (0–100% v/v) of n-butanol, amyl alcohol or hexanol cosurfactants. It was found that 5% cosurfactant with 100 mM of CTAB was sufficient to solubilize more than 90% of the total pepsin. Pepsin solubilization by AOT reverse micelles increases with increasing polarizability and molar volume of the solvents.  相似文献   

10.
The present paper aims to study the proprieties of water confined in water/AOT/isooctane reverse micelles from their refractive indices at 298.5 K. The refractive indices of the microemulsions were investigated at increasing water concentration and at different micellar volume fractions, Φ d. The refractive index of micellar water was deduced for a large water to AOT molar ratio, W 0. The refractive index of interfacial water was also calculated. Then, the molar faction of interfacial water, α, was deduced for different W 0 values and compared with those measured by NMR as reported in the literature. The results show qualitative agreement. Finally, the average aggregation number, n agg, the area per surfactant headgroup, σ, as well as the interfacial thickness, d i, of the reverse micelles were determined for the W 0 values studied. The values of these structural parameters also show good qualitative agreement with NMR and small angle X-ray scattering data reported in the literature. Thus, the refractive index method can be a cheap and fast alternative for these two methods.  相似文献   

11.
A sodium 1,4-bis[(2-ethylhexyl)oxy]-1,4-dioxybutane-2-sulfonate (NaАОТ)–water–isooctane three-component system is calculated by the molecular-dynamics method. In a wide range of relative water contents w 0, reverse micelles are obtained with different morphologies: single spherical and cylindrical micelles and their spatial networks. It is shown that w 0 and surfactant concentration are the main shape-generating factors. The data obtained are in good agreement with previous results of simulations and experimental data.  相似文献   

12.
The molecular conformations of poly(N5-dihydroxyethylaminopropyl-L-glutamine) and poly(N5-dihydroxyethyl-L-glutamine) were investigated in reversed micelles of AOT as well as in aqueous solutions. Both poly(-amino acid)s assume disordered structures in pure water. The conformation of poly(N5-dihydroxyethylaminopropyl-L-glutamine) transits into-helix in the reversed micelles as the molar ratio of water to AOT (w0=[H2O]/[AOT]) becomes smaller. A similar conformational transition was also observed in aqueous solutions when a certain amount of AOT was added. Under these conditions, however, poly(N5-dihydroxyethyl-L-glutamine) did not undergo a conformational transition into-helix.  相似文献   

13.
The chemical characterization of horse liver alcohol dehydrogenase solubilized in isooctane via reverse micelles formed by the anionic surfactant di (2-ethyl-hexyl) sodium sulfosuccinate (AOT) and water (0.6 to 4% v/v) is presented. The enzyme’s catalytic activity toward acetaldehyde reduction is markedly dependent upon w0 = [H2O]/[AOT], and upon the pH of the stock aqueous solution (pHst), from which the hydrocarbon enzyme solution is prepared. Kinetically, the micellar solution appears to follow a normal Michaelis-Menten behavior, with a turnover number which, under the optimal conditions (w0 = 42, pHst = 8.8), appears to be higher than in bulk water. The affinity between enzyme and NADH, as judged from direct binding studies (quenching of the protein fluorescence), is much reduced with respect to water if concentrations refer to the water pool of the micelles, and comparable to water if concentrations refer to the overall volume (hydrocarbon plus water pool). Also, the Km values are much higher if concentrations refer to the water pool. Ultraviolet absorption studies show that the aromatic chromophores are not significantly perturbed on going from a water solution to the micellar solution. The essentially aqueous environment of the protein in the reverse micelles is confirmed by fluoresence studies. Circular dichroism studies show that the enzyme’s conformation in the micelles is similar to that in water; however, under certain conditions, small but significant changes of the main chain folding seem to occur, which do not impair enzymatic activity. The spectroscopic properties of NADH in the hydrocarbon phase (fluorescence and circular dichroism) are also investigated. The potential of the LADH-NADH system for technical applications (oxidoreduction of lipophylic substrates) is discussed.  相似文献   

14.
Cadmium selenide nanoparticles have been synthesized in solutions of AOT/water/n-heptane reverse micelles with average micelle water pool diameters of 25, 30, and 47 Å using cadmium sulfate (CdSO4) and sodium selenosulfate (Na2SeSO3) as precursors. Absorption and fluorescence spectra of the obtained nanoparticles were recorded. The picosecond dynamics of fluorescence decay over the entire range of their emission band have been investigated by time-resolved fluorescence spectroscopy. A procedure for the stabilization of nanoparticles by dodecanethiol was developed for electron microscopy analysis.  相似文献   

15.
Our aim is to doubly confine a molecule of coumarin C522 in a host–guest supramolecular complex with β‐cyclodextrin in a reverse sodium dioctyl sulfosuccinate (AOT) micelle using nonpolar n‐heptane and polar water solvents. Varying the volumes of coumarin C522 and β‐cyclodextrin dissolved in water allows us to control the water‐pool diameters of the reverse micelle in n‐heptane with values of w=3, 5, 10, 20, and 40, where w is the ratio of water concentration to AOT concentration in n‐heptane. To study the fluorescence dynamics of coumarin C522, the spectral steady‐state and time‐resolved dependences are compared for the two systems coumarin C522(water)/AOT(n‐heptane), denoted C522/micelle, and coumarin C522/β‐cyclodextrin(water)/AOT(n‐heptane), referred to as C522/CD/micelle. The formation of the supramolecular host–guest complex CD–C522 is indicated by a blue shift, but in the micelle, the shift is red. However, the values of the fluorescence maxima at 520 and 515 nm are still way below the value of 535 nm representing bulk water. The interpretation of the red shift is based on two complementary processes. The first one is the confinement of CD and C522 by the micelle water pool and the second is the perturbation of the micelle by CD and C522, resulting in an increase of the water polarity. The fluorescence spectra of the C522/micelle and C522/CD/micelle systems have maxima and shoulders. The shoulder intensities at 440 nm, representing the C522 at n‐heptane/AOT interface, decrease as the w values decrease. This intensity shift suggests that the small micelle provides a stronger confinement, and the presence of CD shifts the equilibrium from n‐heptane towards the water pool even more. The fluorescence emission maxima of the C522/micelle and C522/CD/micelle systems for all w values clearly differentiate two trends for w=3–5, and w=10–40, suggesting different interaction in the small and large micelles. Moreover, these fluorescence maxima result in 7 and 13 nm differences for w=3 and w=5, respectively, and provide the spectral evidence to differentiate the C522 confinement in the C522/micelle and C522/CD/micelle systems as an effect of the CD molecule, which might be interpreted as a double confinement of C522 in CD within the micelle. The ultrafast decay in the case of w=3 ranges from 9.5 to 16 ps, with an average of 12.6 ps, in the case of the C522/micelle system. For C522/CD/micelle, the ultrafast decay at w=3 ranges from 9 to 14.5 ps, with an average of 11.8 ps. Increasing w values (from 10 to 40) result in a decrease of the ultrafast decay values in both cases to an average value of about 6.5 ps. The ultrafast decays of 12.6 and 11.8 ps for C522/micelle and C522/CD/micelle, respectively, are in the agreement with the observed red shift, supporting a double confinement in the C522/CD/micelle(w=3) system. The dynamics in the small and large micelles clearly show two different trends. Two slopes in the data are observed for w values of 3–5 and 10–40 in the steady‐state and time‐resolved data. The average ultrafast lifetimes are determined to be 12.6 and 6.5 ps for the small (w=3) and the large (w=40) micelles, respectively. To interpret the experimental solvation dynamics, a simplified model is proposed, and although the model involves a number of parameters, it satisfactory fits the dynamics and provides the gradient of permittivity in the ideal micelle for free water located in the centre (60–80) and for bound water (25–60). An attempt to map the fluorescence dynamics of the doubly confined C522/CD/micelle system is presented for the first time.  相似文献   

16.
Photoinduced disruption of a sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelle is triggered by a Malachite Green leuconitrile derivative (MGL). UV irradiation of MGL solubilized in an AOT-water-chloroform mixture creates a cationic surfactant that interacts electrostatically with the anionic AOT. We investigated the disruption of the reverse micelle by using proton nuclear magnetic resonance spectroscopy and found that UV irradiation of MGL decreases the number of water molecules solubilized in the interior of the AOT reverse micelles. Furthermore, the photoinduced disruption of the reverse micelle is shown to release ribonuclease A, which is trapped in the water in the interior of the AOT reverse micelle. This photoinduced release may offer a desirable transport system of biopolymers.  相似文献   

17.
Shell cross-linked (SCL) micelles with amine-functional coronas have been constructed in aqueous solution by exploiting the micellar self-assembly of new thermo-responsive ABC triblock copolymers. These copolymers were prepared via atom transfer radical polymerisation (ATRP) in convenient one-pot syntheses and comprised a thermo-responsive core-forming poly(propylene oxide) [PPO] block, a cross-linkable central poly(glycerol monomethacrylate) [GMA] block and an amine-functional outer block based on either poly(2-(dimethylamino)ethyl methacrylate) [DMA] or poly([2-(methacryloyloxy)ethyl]trimethyl ammonium chloride) [QDMA]. DMF GPC analysis indicated an Mn of 17,700 and an Mw/Mn of 1.46 for the PPO-PGMA-PDMA triblock copolymer. The DMA residues of the PPO-PGMA-PDMA triblock copolymer were reacted with methyl iodide to prepare copolymers with differing degrees of quaternisation. Each triblock copolymer dissolved molecularly in aqueous solution at 5 °C and formed micelles with amine-functional coronas above a critical micelle temperature (CMT) of around 12 °C, which corresponded closely to the cloud point of the PPO macro-initiator. Cross-linking of the GMA residues in the inner shell using divinyl sulfone produced SCL micelles that remained intact at 5 °C, i.e. below the cloud point of the core-forming PPO block. Aqueous electrophoresis studies confirmed that these SCL micelles had considerable cationic surface charge, as expected. The cationic SCL micelles were adsorbed onto a near-monodisperse anionic silica sol, which was used as a model colloidal substrate. Thermogravimetric analyses indicated SCL micelle mass loadings of 6.1-15.5 wt.%, depending on the initial micelle concentration. Aqueous electrophoresis studies confirmed that surface charge reversal occurred on adsorption of the SCL micelles and scanning electron microscopy studies revealed the presence of SCL micelles on the silica particles.  相似文献   

18.
Linear ABC triblock copolymer PtBA154-b-PS300-b-P2VP240 was successfully synthesized by RAFT polymerization. Block copolymer micelles were prepared by the two-step hierarchical self-assembly process. Size exclusion chromatography and 1H NMR were used to characterize the structure of samples. Morphologies and size of micelles were determined by transmission electron microscope. The results showed that the densely dispersed spherical micelles of PtBA154-b-PS300-b-P2VP240 were obtained in the first step of the hierarchical self-assembly process. In the second step, core-compartmentalized micelle strings with different lengths and distribution densities were obtained when the primary self-assembled solution was dialyzed in distilled water with pH ≈ 3. When distilled water with pH ≈ 3 was added drop-wise to this solution, uniformly dispersed spherical core-compartmentalized micelles of PtBA154-b-PS300-b-P2VP240 were prepared. Thus, hierarchical self-assembly structure of linear ABC triblock copolymer was obtained successfully and the preparation of uniformly dispersed spherical micelles of triblock copolymers was realized simply by changing the secondary self-assembly methods.  相似文献   

19.
The effect the degree of hydration has on optical and electrophysical properties of water/AOT/n-hexane system is studied. It is found that AOT reverse micelles form aggregates whose dimensions grow along with the degree of hydration and temperature. Aggregation enhances their electrical conductivity and shifts the UV spectrum of AOT reverse emulsions to the red region. Four states of water are found in the structure of AOT reverse micelles.  相似文献   

20.
Influence of mixed aquo-organic solvents viz. water-dimethyl sulfoxide (DMSO), water-formamide (FA), water-dioxane (DX), and water-ethylene glycol (EG) on the micellization of sodium dodecylsulfate (SDS) alone and in presence of neutral polymer polyvinyl pyrrolidone (PVP) was studied. Interaction with PVP initially witnessed formation of critical aggregation concentration (CAC) in the favor of formation of induced small micelles of SDS at a concentration lower than the normal critical micelle concentration (CMC), and later found the formation of normal micelles with extended critical micelle concentrations (CMCe) in solution. The SDS-PVP interaction depended on the nature and composition of the mixed solvents. Besides CAC and CMCe, the maximum Gibbs surface excess at the interface (Γ max), the minimum area (A min) of the dissociated amphiphile anion, and enthalpy of micellization (ΔH m 0 ) were also determined. Configurational state of PVP in aquo-organic media was investigated by the methods of viscometry, dynamic light scattering (DLS), and scanning electron microscope (SEM) methods. The [η] and Huggins constant (k H) were considered to ascertain the overall configuration of PVP in solution. The complexes were formed and aggregated at different stages of their molecular composition. The aggregate sizes were determined by DLS, and the surface morphologies in the solvent removed states were examined by SEM. With reference to bulk and interfacial phenomena, polymer-surfactant interaction is thus considered to be important, and the detailed study herein under taken for SDS-PVP combination and PVP alone in mixed aquo-organic solvent media is a new sort of attempt. Figure
DX and DMSO influenced [η] of PVP, SDS interacted PVP enthalpogram and the SEM image of the PVP in 10 wt% DX  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号