首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The advent of sensitive and reliable HPLC-NMR and HPLC-MS systems has revolutionised the identification of compounds eluting from chromatographic systems. More recently systems have been described wherein both NMR and MS are used together to provide an immensely powerful means of characterising compounds in chromatographic eluents. Here the construction and application of combined HPLC-NMR-MS systems to the analysis of mixtures of pharmaceuticals, drug metabolites in biological fluids and natural products in plant extracts is reviewed. In addition preliminary work with alternative systems such as HPLC-UV-NMR-FTIR-MS is highlighted and the prospects for such complex systems considered.  相似文献   

3.
The major uncertainty related to ion mobility spectrometry is the lack of knowledge about the characteristics of the ions detected. When using a radioactive atmospheric pressure ionisation source (e.g. 63Ni), from theory proton bound water clusters are expected as reactant ions. When analyte ions occur, proton transfer should lead to proton-bound monomer and dimer ions. To increase the knowledge about those ionisation processes in an ion mobility spectrometer (IMS), a ß-radiation ionisation source was coupled to a mass spectrometer (MS) and an identical one to an IMS. Exemplarily, acetone, limonene and 2- and 5-nonanone were introduced into both instruments in varying concentrations. By correlating the MS and IMS spectra, conclusions about the identities of the ions detected by IMS could be drawn. Proton-bound monomer, dimer and even trimer ions (MH+, 2MH+, 3MH+) could be observed in the MS spectra for acetone and 5-nonanone and could be assigned to the related signals detected by IMS. The oligomers could be expected from theory for increasing concentration. Limonene and 2-nonanone yielded in a variety of different ions and fragments indicating complex gas phase ion chemistry. Those findings on the obviously different behaviour of different analytes require further research focussed on the ion chemistry in IMS including the comparison of different ionisation sources.  相似文献   

4.
In aqueous solutions, the autoxidation by air of 2-amino-4-hydroxy-6,7-dimethyl-5,6,7,8-tetra-hydropteridine, a hydroxylase cofactor, leads to the corresponding 7,8-dihydro derivate. Oxidation by hydrogen peroxide and Horseradish peroxidase does not give a stable quinonoid form as previously claimed but affords two metabolic products. Kinetics of the two pathways and structures of the different final compounds were determined by 1H nmr and mass spectrometry.  相似文献   

5.
6.
Electrospray ionization (ESI-MS) and matrix assisted laser desorption-ionization (MALDI-MS) were used to determine the composition (monomer ratios) and structure (end group analysis) relative to 1H NMR spectroscopy and theoretical predictions for three different copolymers: poly(butyl acrylate/vinyl acetate) (PBA/PVAc), poly(methyl methacrylate/vinyl acetate) (PMMA/PVAc) and poly(butyl acrylate/methyl methacrylate) (PBA/PMMA). We found that the ESI results were in excellent agreement with 1H NMR spectroscopy for PBA/PVAc and PBA/PMMA copolymers whereas there was more divergence in the case of PMMA/PVAc. In the case of PBA/PMMA copolymers similar distributions of products were observe by ESI-MS and MALDI-MS with the two major products classes differing by their end-groups. One class has hydrogen and dodecylthio end groups while in the other the dodecylthio has been replaced by alpha-cyanoisopropyl from the initiator. The relative abundance of these distributions as a function of copolymer conversion for a series of reaction conditions was investigated by both ESI and MALDI. MALDI results consistently underestimated (relative to ESI) the butylacrylate monomer ratio in PBA/PMMA and the abundance of co-polymer oligomers terminated by a dodecylthio group from the chain transfer agent.  相似文献   

7.
The preparative scale isolation of multiple components from an essential oil matrix is described using multidimensional gas chromatography (prep-MDGC) which allows their further characterisation by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. Menthol, linalyl acetate, carvone and geraniol were isolated individually, and were also collected in various combinations. It was demonstrated to be possible to collect multiple selected components from numerous repeat injections of the sample, to permit increased mass recovery from an external cryotrap collection device. Peak retention times remained reproducible (<0.3 s) over the repeated injections and switching events. This methodology may be utilised to confirm peak identity or to produce unique mixed-component reference standards, for instance to allow their identification in other samples using GC/MS, or identify them in comprehensive two-dimensional gas chromatography (GC × GC) analysis.  相似文献   

8.
Travelling wave ion mobility mass spectrometry (TWIM‐MS) with post‐TWIM and pre‐TWIM collision‐induced dissociation (CID) experiments were used to form, separate and characterize protomers sampled directly from solutions or generated in the gas phase via CID. When in solution equilibria, these species were transferred to the gas phase via electrospray ionization, and then separated by TWIM‐MS. CID performed after TWIM separation (post‐TWIM) allowed the characterization of both protomers via structurally diagnostic fragments. Protonated aniline (1) sampled from solution was found to be constituted of a ca. 5:1 mixture of two gaseous protomers, that is, the N‐protonated (1a) and ring protonated (1b) molecules, respectively. When dissociated, 1a nearly exclusively loses NH3, whereas 1b displays a much diverse set of fragments. When formed via CID, varying populations of 1a and 1b were detected. Two co‐existing protomers of two isomeric porphyrins were also separated and characterized via post‐TWIM CID. A deprotonated porphyrin sampled from a basic methanolic solution was found to be constituted predominantly of the protomer arising from deprotonation at the carboxyl group, which dissociates promptly by CO2 loss, but a CID‐resistant protomer arising from deprotonation at a porphyrinic ring NH was also detected and characterized. The doubly deprotonated porphyrin was found to be constituted predominantly of a single protomer arising from deprotonation of two carboxyl groups. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The application of high-field Fourier transform nuclear magnetic resonance (NMR) spectroscopy to the analysis of biological fluids such as urine, plasma and bile is described. Applications include areas such as clinical chemistry, experimental and clinical toxicology and drug metabolism studies. In the case of proton NMR some means of attenuating or eliminating the interference due to water protons is required and suitable strategies for achieving this are discussed. The use of 2-dimensional NMR or solid-phase extraction/chromatography to enable the identification of unknowns is discussed and the potential usefulness of 19F NMR for studying the metabolism of fluorinated xenobiotics is highlighted.  相似文献   

10.
Ion mobility and mass spectrometry measurements have been used to examine the populations of different solution structures of the nonapeptide bradykinin. Over the range of solution compositions studied, from 0:100 to 100:0 methanol:water and 0:100 to 90:10 dioxane:water, evidence for 10 independent populations of bradykinin structures in solution is found. In some solutions as many as eight structures may coexist. The solution populations are substantially different than the gas-phase equilibrium distribution of ions, which exhibits only three distinct states. Such a large number of coexisting structures explains the inability of traditional methods of characterization such as nuclear magnetic resonance spectroscopy and crystallography to determine detailed structural features for some regions of this peptide.  相似文献   

11.
The ability of travelling wave ion mobility mass spectrometry (TWIM-MS) to resolve cationic meta/para and cis/trans isomers of mono-, di-, tri- and tetra-ruthenated supramolecular porphyrins was investigated. All meta isomers were found to be more compact than the para isomers and therefore mixtures of all isomeric pairs could be properly resolved with baseline or close to baseline peak-to-peak resolution (R(p-p)). Di-substituted cis/trans isomers were found, however, to present very similar drift times and could not be resolved. N(2) and CO(2) were tested as the drift gas, and similar α but considerably better values of R(p) and R(p-p) were always observed for CO(2).  相似文献   

12.
N-Octyl bicycloheptene dicarboximide (MGK 264) has exo and endo diastereomers. Each structure has a chiral center at the nitrogen side chain. Enantioselective separation of MGK 264 was achieved by normal-phase high-performance liquid chromatography (HPLC) using cellulose-based Chiralcel OD column with diode-array and optical rotation detectors. Peaks were isolated with the purpose of identifying their stereochemical structures. Molecular mass of the HPLC peaks and their structural information was determined by liquid chromatography-electrospray tandem mass spectrometry (LC-ES-MS-MS). A two-dimensional nuclear magnetic resonance (NMR) spectroscopic technique was used to establish the structural features. Correlation of the data obtained from chiral separation and NMR facilitated in unambiguous assignment of the HPLC peaks.  相似文献   

13.
14.
Hemoglobin (Hb) is a tetrameric noncovalent complex consisting of two α- and two β-globin chains each associated with a heme group. Its exact assembly pathway is a matter of debate. Disorders of hemoglobin are the most common inherited disorders and subsequently the molecule has been extensively studied. This work attempts to further elucidate the structural properties of the hemoglobin tetramer and its components. Gas-phase conformations of hemoglobin tetramers and their constituents were investigated by means of traveling-wave ion mobility mass spectrometry. Sickle (HbS) and normal (HbA) hemoglobin molecules were analyzed to determine whether conformational differences in their quaternary structure could be observed. Rotationally averaged collision cross sections were estimated for tetramer, dimer, apo-, and holo-monomers with reference to a protein standard with known cross sections. Estimates of cross section obtained for the tetramers were compared to values calculated from X-ray crystallographic structures. HbS was consistently estimated to have a larger cross section than that of HbA, comparable with values obtained from X-ray crystallographic structures. Nontetrameric species observed included apo- and holo- forms of α- and β-monomers and heterodimers; α- and β-monomers in both apo- and holo- forms were found to have similar cross sections, suggesting they maintain a similar fold in the gas phase in both the presence and the absence of heme. Heme-deficient dimer, observed in the spectrum when analyzing commercially prepared Hb, was not observed when analyzing fresh blood. This implies that holo-α-apo-β is not an essential intermediate within the Hb assembly pathway, as previously proposed.  相似文献   

15.
In recent years, the resolving power of ion mobility instruments has been increased significantly, enabling ion mobility spectrometry (IMS) to be utilized as an analytical separation technique for complex mixtures. In theory, decreasing the drift tube temperature results in increased resolution due to decreased ion diffusion. However, the heat requirements for complete ion desolvation with electrospray ionization (ESI) have limited the reduction of temperatures in atmospheric pressure ion mobility instruments. Micro-electrospray conditions were investigated in this study to enable more efficient droplet formation and ionization with the objective of reducing drift tube temperatures and increasing IMS resolution. For small molecules (peptides), the drift tube temperature was reduced to ambient temperature with good resolution by employing reduced capillary diameters and flow rates. By employing micro-spray conditions, experimental resolution values approaching theoretically predicted resolution were achieved over a wide temperature range (30 to 250 °C). The historical heat requirements of atmospheric pressure IMS due to ESI desolvation were eliminated due to the use of micro-spray conditions and the high-resolution IMS spectra of GLY-HIS-LYS was obtained at ambient temperature. The desolvation of proteins (cytochrome c) was found to achieve optimal resolution at temperatures greater than 125 °C. This is significantly improved from earlier IMS studies that required drift tube temperatures of 250°C for protein desolvation.  相似文献   

16.
Quantitative deuterium nuclear magnetic resonance spectroscopy (NMR) has been used in conjunction with stable carbon isotope ratio analysis/mass spectrometry to refine the detection of sugars that have been added to monofloral honeys. The 13C content of sugars indicates the type of photosynthetic metabolism of the plant that synthesized them; the deuterium content is more characteristic of secondary metabolism and of environmental factors. Consequently, determination of the 13C content of honeys and of proteins extracted from the honeys can be used to detect the addition of C4 plant sugars (cane or corn), but it does not reveal the addition of C3 plant sugars such as beet sugar. Deuterium NMR gives useful information for some monofloral honeys. NMR measurement is performed on ethanol obtained from fermentation of the honey and extracted by distillation. The isotopic composition of the ethanol indicates the nature of the sugars from which it was derived. Various types of monofloral honeys were studied, and the results obtained with commercially available honeys demonstrate the usefulness of isotopic analysis and the need to compile a database of authentic honeys to validate or affirm certain results.  相似文献   

17.
Based on the theory of error for abstract factor analysis described earlier, a theory of error for target factor analysis is developed. The theory shows how the error in the data matrix mixes with the error in the target test vector. The apparent error in a target test is found to be a vector sum of the real error in the target vector and the real error in the predicted vector. The theory predicts the magnitudes of these errors without requiring any a priori knowledge of the error in the data matrix or the target vector. A reliability function and a spoil function are developed for the purpose of assessing the validity and the worthi-ness of a target vector. Examples from model data, mass spectrometry and nuclear magnetic -resonance spectrometry are presented.  相似文献   

18.
X-ray crystallographic and cross-polarization/magic angle spinning 13C nuclear magnetic resonance techniques have been used to study an ethylenediamine (EDA)-cellulose I complex, a transient structure in the cellulose I to cellulose IIII conversion. The crystal structure (space group P2 1 ; a = 4.546 Å, b = 11.330 Å, c = 10.368 Å and γ = 94.017°) corresponds to a one-chain unit cell with one glucosyl residue in the asymmetric unit, a gt conformation for the hydroxymethyl group, and one EDA molecule per glucosyl residue. Unusually, there are no O–H···O hydrogen bonds between the cellulose chains; the chains are arranged in hydrophobic stacks, stabilized by hydrogen bonds to the amine groups of bridging EDA molecules. This new structure is an example of a complex in which the cellulose chains are isolated from each other, and provides a number of insights into the structural pathway followed during the conversion of cellulose I to cellulose IIII through EDA treatment.  相似文献   

19.
The field of ion mobility mass spectrometry (IM‐MS) has developed rapidly in recent decades, with new fundamental advances underpinning innovative applications. This has been particularly noticeable in the field of biomacromolecular structure determination and structural biology, with pioneering studies revealing new structural insight for complex protein assemblies which control biological function. This perspective offers a review of recent developments in IM‐MS which have enabled expanding applications in protein structural biology, principally focusing on the quantitative measurement of collision cross sections and their interpretation to describe higher order protein structures.  相似文献   

20.
This paper describes the first application of NMR spectroscopy and LC-NMR/MS to the direct analysis of the aromatic composition of beer, grape juice and a wine phenolic extract. NMR spectroscopy provides non-invasive information on the overall aromatic profile and enables the identification of some compounds. However, a more comprehensive assignment is hindered by the low peak intensity and strong signal overlap in the low-field spectral region, as well as by the inherent lack of scalar coupling information for many aromatic compounds present. LC-NMR/MS can overcome these problems and is shown to aid significantly in the identification of aromatic compounds composing all samples analyzed. Some examples are the identification of several cinnamic acids (e.g. p-coumaric, trans-coutaric and trans-caftaric) in grape juice, the identification of 2-phenylethanol, tyrosol and tryptophol in beer and the detection of phenolics such as catechin, epicatechin, trans-resveratrol, tyrosol and caffeic acid in the wine extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号