首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The synthesis and characterization of cholesterol-based dimesogenic bidentate ligands and their Cu(II) and Pd(II) metallomesogens are reported in detail. To understand structure-property relationships in these materials the terminal alkoxy chains and the central metal atom have been varied. Our studies reveal that chiral dimesogenic bidentate ligands with n-butyloxy chains exhibit smectic A (SmA), twist grain boundary and chiral nematic (N*) mesophases while substitution with either n -decyloxy or 3,7-dimethyloctyloxy chains also show a ferroelectrically switchable chiral smectic C (SmC*) mesophase. The metal complexes with n-butyloxy chains show only the SmA phase whereas higher chain length derivatives exhibit N* phase irrespective of the metal atom present. The ligands are thermally stable whereas their metal complexes, especially Pd(II) systems, seem to be heat sensitive. Spontaneous polarization, response time and tilt angle measurements have been carried out in the smectic C* phase of the two ligands.  相似文献   

2.
《Liquid crystals》2001,28(3):351-355
The synthesis and evaluation of the liquid crystalline properties of non-conventional liquid crystals, consisting of two non-identical mesogenic segments interconnected via a paraffinic chain spacer, are of considerable current interest. In particular, chiral dimesogens possessing a cholesteryl ester unit as the chiral entity joined to other aromatic mesogens through a polymethylene spacer have shown unique and interesting thermal behaviour. In continuation of our investigations on this topic, here we present the synthesis and characterization of the first examples of cholesterol-based unsymmetrical dimesogenic bidentate ligands and their Cu(II) and Pd(II) metal-organic systems (metallomesogens). Our studies reveal that the dimesogenic bidentate ligands exhibit multiple mesophases, whereas their metal complexes stabilize only the mesophase.  相似文献   

3.
The synthesis and evaluation of the liquid crystalline properties of non-conventional liquid crystals, consisting of two non-identical mesogenic segments interconnected via a paraffinic chain spacer, are of considerable current interest. In particular, chiral dimesogens possessing a cholesteryl ester unit as the chiral entity joined to other aromatic mesogens through a polymethylene spacer have shown unique and interesting thermal behaviour. In continuation of our investigations on this topic, here we present the synthesis and characterization of the first examples of cholesterol-based unsymmetrical dimesogenic bidentate ligands and their Cu(II) and Pd(II) metal-organic systems (metallomesogens). Our studies reveal that the dimesogenic bidentate ligands exhibit multiple mesophases, whereas their metal complexes stabilize only the mesophase.  相似文献   

4.
The first achiral bent-core banana-shaped bidentate ligands and their Cu(II) and Pd(II) metal complexes have been synthesized and investigated for mesomorphic behaviour. The bidentate ligands exhibit only one enantiotropic mesophase. The ligand having C 6 -alkoxy chains shows a mesophase that has been assigned as a two-dimensional B 1 phase while the C 8 and C 10 homologues stabilize the fluid B 2 mesophase showing antiferroelectric switching characteristics. In constrast, their corresponding Cu(II) and Pd(II) metal complexes are non-mesomorphic.  相似文献   

5.
The first achiral bent-core banana-shaped bidentate ligands and their Cu(II) and Pd(II) metal complexes have been synthesized and investigated for mesomorphic behaviour. The bidentate ligands exhibit only one enantiotropic mesophase. The ligand having C6 -alkoxy chains shows a mesophase that has been assigned as a two-dimensional B1 phase while the C8 and C10 homologues stabilize the fluid B2 mesophase showing antiferroelectric switching characteristics. In constrast, their corresponding Cu(II) and Pd(II) metal complexes are non-mesomorphic.  相似文献   

6.
The liquid crystalline (LC) properties of two series of non-symmetric dimesogenic compounds consisting of cholesterol and azobenzene-based moieties interconnected by ω-oxyalkanoyl spacers of varying length are compared: one series (AOC-n) has an octyloxy chain attached to the azobenzene mesogen unit while the other (AOCF-n) has a perfluoroheptylmethyloxy chain. In general, compounds bearing the fluorinated alkoxy chain exhibited LC properties over a much broader temperature range than those with the alkoxy chain. In addition, the AOC-n series exhibited the chiral smectic C (SmC*), smectic A (SmA) and cholesteric (N*) phases depending on the length of the central spacer, whereas the AOCF-n series favoured the formation of only the SmA phase with the N* phase completely suppressed. Both series showed an odd-even dependence of the isotropization temperature on spacer length.  相似文献   

7.
We studied the electro-optic and dielectric properties of three pure ferroelectric liquid crystal materials (C10, C11 and C12) of the same series exhibiting cholesteric (N*), smectic A (SmA) and chiral smectic C (SmC*) phases. From electro-optic investigations, the tilt angle and spontaneous polarisation were determined as a function of temperature. In the dielectric measurements carried out without a dc bias field, we studied the soft-mode relaxation in the SmA phase. From experimental data and using the results of a Landau model, we evaluated the soft-mode rotational viscosity and the electroclinic coefficient in the SmA phase. A soft-mode like mechanism was also observed in the N* phase for compounds with shorter chains (C10 and C11). This relaxation process is not detected for the homologue with a longer chain (C12). The observation of this mechanism is related to smectic order fluctuations within N* phase whose amplitude is increased when approaching the SmC*–SmA–N* multicritical point.  相似文献   

8.
Heterometallic liquid crystals are of special interest because of the possibility to combine optical, magnetic and electric properties of different metal ions in one mesogenic molecule. In order to investigate new heteropolynuclear mesogenic systems, a series of β-aminovinylketone ligands derived from acetyl ferrocene have been synthesized. Subsequently Cu(II) and Pd(II) ions were incorporated into the enaminoketone chelate core. The obtained ligands and complexes were characterized by element analysis, 1H NMR, IR and UV–Vis spectroscopies. According to thermal polarizing microscopy and DSC studies, the ligands and Cu(II) complexes exhibit disordered soft crystal phases upon cooling from the isotropic liquid state. The Pd(II) complexes showed monotropic smectic C mesomorphism. The metal centres in the synthesized heteropolynuclear mesogens are in close vicinity to each other, which is of considerable interest from the viewpoint of the potential electron-transfer interactions between a ferrocene core and the central ions.  相似文献   

9.
《Liquid crystals》1999,26(5):685-689
Most of the nickel(II) complexes of tetradentate enaminoketone ligands obtained, although not strictly calamitic and with a rather low length to width ratio, form enantiotropic rod-like nematic and smectic A phases. Corresponding vanadyl(II) complexes exhibit only monotropic mesophases. The vanadyl complexes, due to their non-planar structure, are chiral with an asymmetry centre placed at the metal ion.  相似文献   

10.
The light switching characteristics induced by a thermal smectic A (SmA) ? chiral nematic (N*) phase transition were studied for homeotropically aligned [smectic A liquid crystal (SmA-LC)/nematic liquid crystal (N-LC)/chiral dopant] and [side chain type smectic A liquid crystalline polymer (SmA-LCP)/N-LC/chiral dopant] composites. A drastic change from a transparent SmA phase to a light-scattering N* phase occurred in both composites upon heating. In the case of the heat-induced N* phase for the (SmA-LC/N-LC/chiral dopant) composite, the N* phase exhibited weak light scattering due to formation of a scroll texture. On the other hand, in the case of the heat-induced N* phase for the (SmA-LCP/N-LC/chiral dopant) composite, the N* phase showed strong light scattering due to formation of a focalconic texture. The existence of a SmA-LCP was responsible for a higher contrast ratio between the transparent SmA phase and the light scattering N* phase for the (SmA-LCP/ N-LC/chiral dopant) composite than for the (SA-LCN/N-LC/chiral dopant) composite.  相似文献   

11.
Binding of tryptophan residue to intrinsic metal ions in proteins is unknown, and very little is known about the coordinating abilities of indole. Indole-3-acetamide displaces the solvent ligands from cis-[Pt(en)(sol)2]2+, in which sol is acetone or H2O, in acetone solution and forms the complex cis-[Pt(en)(indole-3-acetamide)]2+ (3) of spiro structure, in which the new bidentate ligand coordinates to the Pt(II) atom via the C(3) atom of the indolyl group and the amide oxygen atom. This structure is supported by 1H, 13C, 15N, and 195Pt NMR spectra and by UV, IR, and mass spectra. Molecular mechanical simulations by Hyperchem and CHARMM methods give consistent structural models; the latter is optimized by density-functional quantum chemical calculations. Dipeptide-like molecules N-(3-indolylacetyl)-L-amino acid in which amino acid is alanine, leucine, isoleucine, valine, aspartic acid, or phenylalanine also displace the solvent ligands in acetone solution and form complexes cis-[Pt(en) N-(3-indolylacetyl)-L-amino acid)]2+ (6), which structurally resemble 3 but exist as two diastereomers, detected by 1H NMR spectroscopy. The bulkier the amino acid moiety, the slower the coordination of these dipeptide-like ligands to the Pt(II) atom. The indolyl group does not coordinate as a unidentate ligand; a second donor atom is necessary for bidentate coordination of this atom and the indolyl C(3) atom. The solvent-displacement reaction is of first and zeroth orders with respect to indole-3-acetamide and cis-[Pt(en)(sol)2]2+, respectively. A mechanism consisting of initial unidentate coordination of the ligand via the amide oxygen atom followed by closing of the spiro ring is supported by 1H NMR data, the kinetic effects of acid and water, and the activation parameters for the displacement reaction. In the case of N-(3-indolylacetyl)-L-phenylalanine, the bulkiest of the entering ligands, the reaction is of first order with respect to both reactants. The bidentate indole-3-acetamide ligand in 3 is readily displaced by (CH3)2SO and 2-methylimidazole, but not by CNO-, CH3COO-, and CH3CN. Complexes cis-[Pd(en)(sol)2]2+ and cis-[Pd(dtco)(sol)2]2+ react with indole-3-acetamide more rapidly than their Pt(II) analogues do and yield complexes similar to 3. This study augments our recent discovery of selective, hydrolytic cleavage of tryptophan-containing peptides by Pd(II) and Pt(II) complexes.  相似文献   

12.
The synthesis and mesomorphic properties of a homologous series of N-(2-hydroxy-4-n-alkoxybenzylidene)-4'-n-decylphenylanilines and their platinum(II) and oxovanadium(IV) complexes are reported. All the ligands and their metal chelates exhibit enantiotropic mesophases, predominantly smectic A and smectic C phases. The transition temperatures and enthalpies have been determined for most of the compounds. The platinum(II) complexes have higher melting points and mesophase thermal stabilities. However, the oxovanadium(IV) complexes have a wider thermal range for the mesophase. Both platinum(II) and oxovanadium(IV) complexes containing only a chain on the biphenyl moiety exhibit a nematic phase.  相似文献   

13.
Some new Cu(II) complexes containing [1,2,3]-triazole-based bidentate salicylaldimine and its analogues with terminal substituent (F, Cl, Br and I) have been synthesieed. All the target complexes and their uncoordinated ligands were elucidated by elemental analysis and spectroscopic techniques (UV-visible, FT-IR, 1D, 2D 1H and 13C-NMR). The polarising optical microscope and differential scanning calorimetry (DSC) have disclosed all complexes and ligands are mesomorphic except the complex without any terminal substituent. The fluoro-substituted complexes with even parity C14H29 and C16H33 exhibit new enantiotropic nematic phase which was absent in their corresponding ligands, whereas the suppression of SmC phase occurred for all complexes with longer C16H33 and C18H37. X-ray diffraction confirmed the existence of SmA, SmC and N phases for complexes and ligands. The other notable feature is that the self-ordering of terminal alkyl chain occurred in SmA and SmC phases of complexes with even terminal alkyl chain ranging from C14H29 to C18H33. Their corresponding ligands exhibit intercalated structure of SmA and SmC phases. The thermal behaviour studies show that the fluoro-substituted triazole-based complexes possess lowest phase transition temperature and more stable as compared to other substituent which decomposed during the isotropisation.  相似文献   

14.
《Liquid crystals》2007,34(2):195-211
Six new compounds with chiral terminal chains and three rings bridged via the -COS- and -COO- groups have been synthesized. Three of them belong to series A and have two benzene rings and one bicyclo[2,2,2]octane, while the remaining three come from series B, where all three are benzene rings. Series A compounds share a characteristic feature of two smectic phases: SmA* and SmB*, whereas mesogens from the B series exhibit only the one SmA* phase.  相似文献   

15.
Two series of trimer liquid crystals were investigated that contain a biphenylyl central group and two cholesteryl or dihydrocholesteryl terminal mesogenic groups. Only compounds with even spacers were investigated. The dihydrocholesteryl-containing trimers show a triply intercalated smectic A (SmA) phase when the spacer lengths are greater than 8, whereas the cholesteryl-containing trimers exhibit this triply intercalated SmA phase when the spacer lengths are more than 6. With shorter spacers, a twist grain boundary C* (TGBC*) phase was found. This is revealed by the formation of a typical dotted square grid pattern upon cooling from the chiral nematic (N*) phase in the planar texture. The dots are spaced by a distance of about 1.5-1.8 µm. Upon cooling from the N* phase in the focal conic texture a striped pattern is observed with the same spacing. X-ray diffraction revealed a repeat distance for the TGBC* phase that corresponds with a monolayer ordering. The results show that the weaker interaction between the dihydrocholesteryl groups compared with cholesteryl groups or longer spacers destabilize the monolayer TGBC* phase.  相似文献   

16.
《Liquid crystals》1997,23(5):667-676
A transition between the transparent smectic A (SmA) phase and the light scattering chiral nematic (N*) phase was realized based on the thermally induced SmA N* phase transition for the homeotropically aligned \[liquid crystalline polymer (LCP)/liquid crystal (LC)/chiral dopant] ternary composite system. The LCP played an important role in increasing the intensity of the light scattering of the heat-induced N* phase. Meanwhile the effects of the composition of the ternary composite system on the thermo-optical characteristics were also investigated.  相似文献   

17.
A (photo-polymerizable liquid crystal (LC) monomer/LCs/chiral dopant/photoinitiator) mixture with a smectic A (SmA)-chiral nematic (N*) phase transition was sandwiched between two ITO glass substrates which were not subjected to any surface orientation treatment. When an electric field-induced homeotropically oriented SmA phase of the mixture was irradiated with UV light, an oriented liquid crystalline polymer (LCP) network was formed upon photo-polymerization of the LC monomer. Then, a (homeotropically oriented LCP network/LCs/chiral dopant) composite with a SmA-N* phase transition was prepared. A focal-conic texture appeared in the heat-induced N* phase of the composite upon heating from the transparent state of the homeotropically oriented SmA phase; the focal-conic texture exhibited strong light scattering. Upon cooling the composite to the SmA phase, this phase was again homeotropically oriented due to the strong intermolecular interaction between the LC molecules and the homeotropically oriented LCP network. Thus, the transparent state of the SmA phase and the light scattering state of the N* phase occurred reversibly upon cooling and heating, accompanied by the thermal SmA-N* phase transition.  相似文献   

18.
《Liquid crystals》2000,27(12):1695-1699
A (photo-polymerizable liquid crystal (LC) monomer/LCs/chiral dopant/photoinitiator) mixture with a smectic A (SmA)-chiral nematic (N*) phase transition was sandwiched between two ITO glass substrates which were not subjected to any surface orientation treatment. When an electric field-induced homeotropically oriented SmA phase of the mixture was irradiated with UV light, an oriented liquid crystalline polymer (LCP) network was formed upon photo-polymerization of the LC monomer. Then, a (homeotropically oriented LCP network/LCs/chiral dopant) composite with a SmA-N* phase transition was prepared. A focal-conic texture appeared in the heat-induced N* phase of the composite upon heating from the transparent state of the homeotropically oriented SmA phase; the focal-conic texture exhibited strong light scattering. Upon cooling the composite to the SmA phase, this phase was again homeotropically oriented due to the strong intermolecular interaction between the LC molecules and the homeotropically oriented LCP network. Thus, the transparent state of the SmA phase and the light scattering state of the N* phase occurred reversibly upon cooling and heating, accompanied by the thermal SmA-N* phase transition.  相似文献   

19.
New mesogenic heteropolynuclear complexes of Cu(II), Pd(II), Ni(II) and VO(IV) with the [3]ferrocenophane‐containing Schiff's base, and Cu(II) and Pd(II) complexes with the [3]ferrocenophane‐containing β‐aminovinylketone have been synthesised. The obtained heterometallic mesogenes are identified by elemental analysis, proton nuclear magnetic resonance, infrared and ultraviolet–visible spectroscopies. Liquid crystalline properties are studied by thermal polarising optical microscopy and differential scanning calorimetry techniques. Both ligands and heteropolynuclear complexes exhibit thermotropic nematic and smectic C mesophases in various temperature ranges except for the Ni(II) complex. Mesomorphism of the prepared complexes is correlated with the geometry of their central chelate core. Considerably broader mesophases and lower transition temperatures are achieved in the synthesised metallomesogens by using the alkylidene‐bridged ferrocene as a building unit.  相似文献   

20.

2-[(pyridin-2-ylmethylidene)amino]-6-aminopyridine (L1), 2-[(2-furylmethylene)]phenylenediamine (L2) and their Mn(II) and Pd(II) complexes have been synthesized as potential photoactive materials, and their structures were elucidated using a variety of physicochemical techniques. The molar conductance data reveal that all complexes are nonionic in nature. Theoretical calculations were computed using the density functional theory, where the B3LYP functional was employed. The experimental results and the calculated parameters revealed a square planar and octahedral geometry around Pd(II) and Mn(II), respectively, in which the ligands coordinate to the metal ions as a bidentate manner. The thermal decomposition of the complexes has been studied. The catalytic activity of the complexes toward hydrogen peroxide decomposition reaction was investigated at 35 and 55 °C. In addition, the synthesized ligands, in comparison with their metal complexes, were screened for their antibacterial activity.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号