首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis is presented to investigate the effects of thermophoresis and variable viscosity on MHD mixed convective heat and mass transfer of a viscous, incompressible and electrically conducting fluid past a porous wedge in the presence of chemical reaction. The wall of the wedge is embedded in a uniform porous medium in order to allow for possible fluid wall suction or injection. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically by using the R.K. Gill and shooting methods. Favorable comparison with previously published work is performed. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as for the skin friction, heat and mass transfer and deposition rate are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.  相似文献   

2.
An analysis is presented to investigate the effects of thermophoresis variable viscosity on MHD mixed convective heat and mass transfer of a viscous, incompressible and electrically conducting fluid past a porous wedge in the presence of chemical reaction. The wall of the wedge is embedded in a uniform porous medium in order to allow for possible fluid wall suction or injection. The governing boundary layer equations are written into a dimensionless form by local non-similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically by using the R.K. Gill and shooting methods. Favorable comparison with previously published work is performed. Numerical results for the dimensionless velocity, temperature and concentration profiles are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.  相似文献   

3.
Thermophoresis particle deposition with chemical reaction on Magnetohydrodynamic flow of an electrically conducting fluid over a porous stretching sheet in the presence of a uniform transverse magnetic field with variable stream conditions is investigated using scaling group transformation. Starting from Navier-Stokes equations and using scaling group transformations, the governing equations are obtained in the form of differential equations. The fluid viscosity is assumed to vary as a linear function of temperature. It is found that the decrease in the temperature-dependent fluid viscosity makes the velocity to decrease with the increasing distance of the stretching sheet. At a particular point of the sheet the fluid velocity decreases with the decreasing viscosity but the temperature increases in this case. Impact of thermophoresis particle deposition in the presence of chemical reaction plays an important role on the concentration boundary layer. The results thus obtained are presented graphically and discussed.  相似文献   

4.
The group theoretic method is applied for solving the problem of the combined influence of the thermal diffusion and diffusion thermoeffect on magnetohydrodynamic free convective heat and mass transfer over a porous stretching surface in the presence of thermophoresis particle deposition with variable stream conditions. The application of one-parameter groups reduces the number of independent variables by one; consequently, the system of governing partial differential equations with boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. The equations along with the boundary conditions are solved numerically by using the Runge-Kutta-Gill integration scheme with the shooting technique. The impact of the Soret and Dufour effects in the presence of thermophoresis particle deposition with a chemical reaction plays an important role on the flow field.  相似文献   

5.
An analysis is presented to investigate the effects of variable viscosities and thermal stratification on the MHD mixed convective heat and mass transfer of a viscous, incompressible, and electrically conducting fluid past a porous wedge in the presence of a chemical reaction. The wall of the wedge is embedded in a uniform nonDarcian porous medium in order to allow for possible fluid wall suction or injection. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically with finite difference methods. Numerical calculations up to the thirdorder level of truncation are carried out for different values of dimensionless parameters. The results are presented graphically, and show that the flow field and other quantities of physical interest are significantly influenced by these parameters. The results are compared with those available in literature, and show excellent agreement.  相似文献   

6.
A boundary layer analysis is presented to investigate numerically the effects of radiation,thermophoresis and the dimensionless heat generation or absorption on hydromagnetic flow with heat and mass transfer over a flat surface in a porous medium.The boundary layer equations are transformed to non-linear ordinary differential equations using scaling group of transformations and they are solved numerically by using the fourth order Runge-Kutta method with shooting technique for some values of physical parameters.Comparisons with previously published work are performed and the results are found to be in very good agreement.Many results are obtained and a representative set is displayed graphically to illustrate the influence of the various parameters on the dimensionless velocity,temperature and concentration profiles as well as the local skin-friction coefficient,wall heat transfer,particle deposition rate and wall thermophoretic deposition velocity.The results show that the magnetic field induces acceleration of the flow,rather than deceleration(as in classical magnetohydrodynamics(MHD) boundary layer flow) but to reduce temperature and increase concentration of particles in boundary layer.Also,there is a strong dependency of the concentration in the boundary layer on both the Schmidt number and mass transfer parameter.  相似文献   

7.
An analysis is performed to study the thermophoresis effects in a transient free convective flow of a viscous, incompressible fluid past an isothermal vertical plate in a doubly stratified medium. The governing boundary layer equations are solved numerically using an implicit finite difference scheme of Crank-Nicolson type. The influence of thermophoresis on particle deposition velocity and particle concentration in a doubly stratified medium are analyzed and illustrated graphically. As well the influence of thermal and mass stratification on velocity, temperature and concentration are also investigated and presented. The influence of the parameters on local as well as average skin-friction, the rate of heat and mass transfer are presented graphically and discussed. The results are compared with particular solutions available in the literature and are found to be in good agreement.  相似文献   

8.
This article concerns with a steady two-dimensional flow of an electrically conducting incompressible fluid over a vertical stretching sheet. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the parameters of the transformations. Impact of thermophoresis particle deposition in the presence of temperature-dependent fluid viscosity plays an important role on the concentration boundary layer. The results thus obtained are presented graphically and discussed.  相似文献   

9.
The present contribution deals with the thermophoresis particle deposition and thermal radiation effects on the flow, heat and mass transfer characteristics in a viscous fluid over a semi-infinite vertical porous plate. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically by means of the fourth-order Runge–Kutta method with a shooting technique. The effects of different parameters on the dimensionless velocity, temperature, and concentration profiles are shown graphically. In addition, results for the local skin-friction coefficient, the local Nusselt number, and the local Sherwood number are tabulated and discussed.  相似文献   

10.
Homotopy analysis method is used to analyze the effect of thermophoretic particle deposition on magnetohydrodynamic mixed convection flow with heat and mass transfer over a porous wedge. An explicit analytical solution is obtained which is valid throughout the solution domain and is consistent with numerical results.  相似文献   

11.
An analysis of a second-grade fluid in a semi-porous channel in the presence of a chemical reaction is carried out to study the effects of mass transfer and magnetohydrodynamics. The upper wall of the channel is porous, while the lower wall is impermeable. The basic governing flow equations are transformed into a set of nonlinear ordinary differential equations by means of a similarity transformation. An approximate analytical solution of nonlinear differential equations is constructed by using the homotopy analysis method. The features of the flow and concentration fields are analyzed for various problem parameters. Numerical values of the skin friction coefficient and the rate of mass transfer at the wall are found.  相似文献   

12.
The deposition of non-metallic particles in liquid-metal flows is a serious industrial problem because the build-up of particles on ceramic walls clogs the flow path and interrupts the production, and this leads to large economic losses. This paper is an effort to extend the current state-of-the-art knowledge of particle deposition in air in order to predict particle deposition rates in liquid-metal flows using an improved Eulerian deposition model and considering Brownian and turbulent diffusion, turbophoresis and thermophoresis as transportation mechanisms. The model was used to predict the rate of deposition of particles in an air flow, and the predictions were compared to published measurements to demonstrate its performance. The model was then modified to take into account the differences in properties between air and liquid metals and thereafter applied to liquid-metal flows. Effects on the deposition rate of parameters such as steel flow rate, particle diameter, particle density, wall roughness and temperature gradient near the wall were investigated. It is shown that the steel flow rate has a very important influence on the rate of deposition of large particles, for which turbophoresis is the main deposition mechanism. For small particles, both wall roughness and thermophoresis have a significant influence on the particle deposition rate. Particle deposition rates under various conditions were successfully predicted.  相似文献   

13.
Combined heat and mass transfer on free, forced, and mixed convection flow along a porous wedge with magnetic effect in the presence of chemical reaction is investigated. The flow field characteristics are analyzed by the Runge-Kutta-Gill scheme with the shooting method as well as the local non-similarity method up to the third level of truncation, which are used to reduce the governing partial differential equations into nine ordinary differential equations. The governing boundary layer equations are converted to a dimensionless form by Falkner-Skan transformations. Because of the effect of suction/injection on the wall of the wedge with buoyancy force and variable wall temperature, the flow field is locally non-similar. Numerical calculations up to the third order level of truncation are carried out as a special case for different values of dimensionless parameters. Effects of the magnetic field strength in the presence of chemical reaction with variable wall temperature and concentration on the dimensionless velocity, temperature and concentration profiles are shown graphically.  相似文献   

14.
Direct numerical simulation (DNS) and experimental data have shown that inertial particles exhibit concentration peaks in isothermal turbulent boundary layers, whereas tracer-like particles remain well mixed in the domain. It is therefore expected that the interactions between turbulence and thermophoresis will be strong in particle-laden flows where walls and carrier fluid are at significantly different temperatures. To capture turbulent particle dispersion with active thermophoresis, a coupled CFD-Lagrangian continuous random walk (CRW) model is developed. The model uses 3D mean flow velocities obtained from the Fluent 6.3 CFD code, to which are added turbulent fluid velocities derived from the normalized Langevin equation which accounts for turbulence inhomogeneities. The mean thermophoretic force is included as a body force on the particle following the Talbot formulation. Validation of the model is performed against recent integral thermophoretic deposition data in long pipes as well as the TUBA TT28 test with its detailed local deposition measurements. In all cases, the agreement with the data is very good. In separate parametric studies in a hypothetical cooled channel flow, it is found that turbulence strongly enhances thermophoretic deposition of particles with dimensionless relaxation times τ+ of order 1 or more. On the other hand, the thermophoretic deposition of very small inertia particles (τ+ < 0.2) in the asymptotic region far from the injection point tends to that which characterizes stagnant flow conditions, in agreement with the DNS results of Thakurta et al.  相似文献   

15.
Particle deposition in a tube with laminar flow is investigated. An analytical procedure is developed for predicting the particle deposition efficiency by incorporating the velocity of thermophoresis in the equation of conservation of particles. Effects of important parameters, such as temperature difference between the inlet gas and the tube wall, particle size and the Lewis number, on the particle precipitation efficiency are examined. Also considered in this work is the assumption of constant temperature gradient as a limiting case. It is found that particle precipitation efficiency predicted by using constant temperature gradient is much optimistic.  相似文献   

16.
This article concerns with a steady two-dimensional flow of an electrically conducting incompressible fluid over a vertical stretching sheet. The flow is permeated by a uniform transverse magnetic field. The fluid viscosity is assumed to vary as a linear function of temperature. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the parameters of the transformations. After finding three absolute invariants, a third-order ordinary differential equation corresponding to the momentum equation, and two second-order ordinary differential equations corresponding to energy and diffusion equations are derived. The equations along with the boundary conditions are solved numerically. It is found that the decrease in the temperature-dependent fluid viscosity makes the velocity to decrease with the increasing distance of the stretching sheet. At a particular point of the sheet, the fluid velocity decreases with the decreasing viscosity but the temperature increases in this case. Impact of thermophoresis particle deposition in the presence of temperature-dependent fluid viscosity plays an important role on the concentration boundary layer. The results, thus, obtained are presented graphically and discussed.  相似文献   

17.
The effect of chemical reaction on free convection heat and mass transfer for a non-Newtonian power law fluid over a vertical flat plate embedded in a fluid-saturated porous medium has been studied in the presence of the yield stress and the Soret effect. The governing boundary layer equations and boundary conditions are cast into a dimen- sionless form by similarity transformations, and the resulting system of equations is solved by a finite difference method. The results are preSented and discussed for concentration profiles, as well as the Nusselt number and the Sherwood number for various values of the parameters, which govern the problem. The results obtained show that the flow field is influenced appreciably by the presence of the chemical reaction parameter γ the order of.the chemical reaction parameter m, the Soret number St, the buoyancy ratio N, the Lewis number Le, and the dimensionless rheological parameter Ω.  相似文献   

18.
The coupled flow problem of an incompressible axisymmetrical quasisteady motion of a porous sphere translating in a viscous fluid along the axis of a circular cylindrical pore is discussed using a combined analytical–numerical technique. At the fluid–porous interface, the stress jump boundary condition for the tangential stress along with continuity of normal stress and velocity components are employed. The flow through the porous particle is governed by the Brinkman model and the flow in the outside porous region is governed by Stokes equations. A general solution for the field equations in the clear region is constructed from the superposition of the fundamental solutions in both cylindrical and spherical coordinate systems. The boundary conditions are satisfied first at the cylindrical pore wall by the Fourier transforms and then on the surface of the porous particle by a collocation method. The collocation solutions for the normalized hydrodynamic drag force exerted by the clear fluid on the porous particle is calculated with good convergence for various values of the ratio of radii of the porous sphere and pore, the stress jump coefficient, and a coefficient that is proportional to the permeability. The shape effect of the cylindrical pore on the axial translation of the porous sphere is compared with that of the particle in a spherical cavity; it found that the porous particle in a circular cylindrical pore in general attains a lower hydrodynamic drag than in a spherical envelope.  相似文献   

19.
The effect of local thermal non-equilibrium on linear and non-linear thermal instability in a horizontal porous medium saturated by a nanofluid has been investigated analytically. The Brinkman Model has been used for porous medium, while nanofluid incorporates the effect of Brownian motion along with thermophoresis. A three-temperature model has been used for the effect of local thermal non-equilibrium among the particle, fluid, and solid-matrix phases. The linear stability is based on normal mode technique, while for nonlinear analysis, a minimal representation of the truncated Fourier series analysis involving only two terms has been used. The critical conditions for the onset of convection and the heat and mass transfer across the porous layer have been obtained numerically.  相似文献   

20.
This paper deals with the study of boundary layer flow and heat transfer of a visco-elastic fluid immersed in a porous medium over a non-isothermal stretching sheet. The fluid viscosity is assumed to vary as a function of temperature. The presence of variable viscosity of the fluid leads to the coupling and the non-linearity in the boundary value problem. A numerical shooting algorithm for two unknown initial conditions with fourth-order Runge-Kutta integration scheme has been used to solve the coupled non-linear boundary value problem. An analysis has been carried out for two different cases namely (1) prescribed surface temperature (PST), and (2) prescribed heat flux (PHF), to get the effect of fluid viscosity, permeability parameter and visco-elastic parameter for various situations. The important finding of our study is that the effect of fluid viscosity parameter is to decrease the wall temperature profile significantly when flow is through a porous medium. Further, the effect of permeability parameter is to decrease the skin friction on the sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号