首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 818 毫秒
1.
Let S be a subgroup of a group G. A set ${\Pi= \{H_1, \ldots , H_n\}}$ of subgroups ${H_i (i = 1, \ldots ,n)}$ with ${G=\cup_{H_i\in\Pi}H_i}$ is said to be an equal quasi-partition of G if ${H_i\cap H_j\cong S}$ and ${|H_i|=|H_j|}$ for all ${H_i, H_j\in\Pi}$ with ${i\ne j}$ . In this paper we investigate finite p-groups such that a subset of their maximal subgroups form an equal quasi-partition.  相似文献   

2.
A group $G$ is called a $\mathcal{P }_1$ -group if it has a normal series of finite length whose factors have rank $1$ , while $G$ is an $\mathcal{H }_1$ -group if it has an ascending normal series of the same type. This paper investigates properties of $\mathcal{P }_1$ -groups and $\mathcal{H }_1$ -groups which correspond to known properties of nilpotent and supersoluble groups.  相似文献   

3.
Let G be a commutative group, written additively, with a neutral element 0, and let K be a finite group. Suppose that K acts on G via group automorphisms ${G \ni a \mapsto ka \in G}$ , ${k \in K}$ . Let ${{\mathfrak{H}}}$ be a complex Hilbert space and let ${{\mathcal L}({\mathfrak{H}})}$ be the algebra of all bounded linear operators on ${{\mathfrak{H}}}$ . A mapping ${u \colon G \to {\mathcal L}({\mathfrak{H}})}$ is termed a K-spherical function if it satisfies (1) ${|K|^{-1} \sum_{k\in K} u (a+kb)=u (a) u (b)}$ for any ${a,b\in G}$ , where |K| denotes the cardinality of K, and (2) ${u (0) = {\rm id}_{\mathfrak {H}},}$ where ${{\rm id}_{\mathfrak {H}}}$ designates the identity operator on ${{\mathfrak{H}}}$ . The main result of the paper is that for each K-spherical function ${u \colon G \to {\mathcal {L}}({\mathfrak {H}})}$ such that ${\| u \|_{\infty} = \sup_{a\in G} \| u (a)\|_{{\mathcal L}({\mathfrak{H}})} < \infty,}$ there is an invertible operator S in ${{\mathcal L}({\mathfrak{H}})}$ with ${\| S \| \, \| S^{-1}\| \leq |K| \, \| u \|_{\infty}^2}$ such that the K-spherical function ${{\tilde{u}} \colon G \to {\mathcal L}({\mathfrak{H}})}$ defined by ${{\tilde{u}}(a) = S u (a) S^{-1},\,a \in G,}$ satisfies ${{\tilde{u}}(-a) = {\tilde{u}}(a)^*}$ for each ${a \in G}$ . It is shown that this last condition is equivalent to insisting that ${{\tilde{u}}(a)}$ be normal for each ${a \in G}$ .  相似文献   

4.
We describe some methods for constructing Fischer classes of finite groups by means of the operators defined by given properties of Hall π-subgroups. It is in particular proved that, for a Fischer class $\mathfrak{F}$ and a set of primes π, the class of all finite π-soluble $C_\pi \mathfrak{F}$ -groups, i.e., of all groups whose Hall π-subgroups belong to $\mathfrak{F}$ , is a Fischer class.  相似文献   

5.
Call a Fitting class $\mathfrak{F}$ π-maximal if $\mathfrak{F}$ is (inclusion-)maximal in the class $\mathfrak{C}_\pi$ of all finite π-groups, where π stands for a nonempty set of primes. We establish a π-maximality criterion for a Fitting class $\mathfrak{F}$ of finite π-groups: we prove that a nontrivial Fitting class $\mathfrak{F}$ is π-maximal if and only if there is a prime pπ such that, for every π-group G, the index of the $\mathfrak{F}$ -radical $G_\mathfrak{F}$ in G is equal to 1 or p. This implies Laue’s familiar result on a necessary and sufficient condition of the maximality of an arbitrary Fitting class of finite groups in the class $\mathfrak{C}$ of all finite groups. The π-maximality criterion obtained also gives a confirmation of the negative solution of Skiba’s Problem asking whether a local Fitting class has no inclusion-maximal Fitting subclasses (see Problem 13.50, The Kourovka Notebook: Unsolved Problems in Group Theory, 14th ed., Sobolev Institute of Mathematics, Novosibirsk, 1999).  相似文献   

6.
Consider a finite dimensional complex Hilbert space ${\mathcal{H}}$ , with ${dim(\mathcal{H}) \geq 3}$ , define ${\mathbb{S}(\mathcal{H}):= \{x\in \mathcal{H} \:|\: \|x\|=1\}}$ , and let ${\nu_\mathcal{H}}$ be the unique regular Borel positive measure invariant under the action of the unitary operators in ${\mathcal{H}}$ , with ${\nu_\mathcal{H}(\mathbb{S}(\mathcal{H}))=1}$ . We prove that if a complex frame function ${f : \mathbb{S}(\mathcal{H})\to \mathbb{C}}$ satisfies ${f \in \mathbb{L}^2(\mathbb{S}(\mathcal{H}), \nu_\mathcal{H})}$ , then it verifies Gleason’s statement: there is a unique linear operator ${A: \mathcal{H} \to \mathcal{H}}$ such that ${f(u) = \langle u| A u\rangle}$ for every ${u \in \mathbb{S}(\mathcal{H}).\,A}$ is Hermitean when f is real. No boundedness requirement is thus assumed on f a priori.  相似文献   

7.
Let $ \mathfrak{g} $ be the complex semisimple Lie algebra associated to a complex semisimple algebraic group G, $ \mathfrak{b} $ a Borel subalgebra of $ \mathfrak{g} $ , $ \mathfrak{h}\subset \mathfrak{b} $ the Cartan sublagebra, and N ? G the unipotent subgroup corresponding to the nilradical $ \mathfrak{n}\subset \mathfrak{b} $ . We show that the explicit formula for the extremal projection operator for $ \mathfrak{g} $ obtained by Asherova, Smirnov, and Tolstoy and similar formulas for Zhelobenko operators are related to the existence of a birational equivalence $ N\times \mathfrak{h}\to \mathfrak{b} $ given by the restriction of the adjoint action. Simple geometric proofs of formulas for the “classical” counterparts of the extremal projection operator and of Zhelobenko operators are also obtained.  相似文献   

8.
Let G =  (V, E) be a finite loopless graph and let (A, +) be an abelian group with identity 0. Then an A-magic labeling of G is a function ${\phi}$ from E into A ? {0} such that for some ${a \in A, \sum_{e \in E(v)} \phi(e) = a}$ for every ${v \in V}$ , where E(v) is the set of edges incident to v. If ${\phi}$ exists such that a =  0, then G is zero-sum A-magic. Let zim(G) denote the subset of ${\mathbb{N}}$ (the positive integers) such that ${1 \in zim(G)}$ if and only if G is zero-sum ${\mathbb{Z}}$ -magic and ${k \geq 2 \in zim(G)}$ if and only if G is zero-sum ${\mathbb{Z}_k}$ -magic. We establish that if G is 3-regular, then ${zim(G) = \mathbb{N} - \{2\}}$ or ${\mathbb{N} - \{2,4\}.}$   相似文献   

9.
Let G be a simple algebraic group defined over ?. Let e be a nilpotent element in $ \mathfrak{g} $ = Lie(G) and denote by U ( $ \mathfrak{g} $ , e) the finite W-algebra associated with the pair ( $ \mathfrak{g} $ , e). It is known that the component group Γ of the centraliser of e in G acts on the set ? of all one-dimensional representations of U ( $ \mathfrak{g} $ , e). In this paper we prove that the fixed point set ?Γ is non-empty. As a corollary, all finite W-algebras associated with $ \mathfrak{g} $ admit one-dimensional representations. In the case of rigid nilpotent elements in exceptional Lie algebras we find irreducible highest weight $ \mathfrak{g} $ -modules whose annihilators in U ( $ \mathfrak{g} $ ) come from one-dimensional representations of U ( $ \mathfrak{g} $ , e) via Skryabin’s equivalence. As a consequence, we show that for any nilpotent orbit $ \mathcal{O} $ in $ \mathfrak{g} $ there exists a multiplicity-free (and hence completely prime) primitive ideal of U ( $ \mathfrak{g} $ ) whose associated variety equals the Zariski closure of $ \mathcal{O} $ in $ \mathfrak{g} $ .  相似文献   

10.
Let $ {\user1{\mathcal{C}}} $ be the commuting variety of the Lie algebra $ \mathfrak{g} $ of a connected noncommutative reductive algebraic group G over an algebraically closed field of characteristic zero. Let $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ be the singular locus of $ {\user1{\mathcal{C}}} $ and let $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ be the locus of points whose G-stabilizers have dimension > rk G. We prove that: (a) $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ is a nonempty subset of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ ; (b) $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{irr}}}} = 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ where the maximum is taken over all simple ideals $ \mathfrak{a} $ of $ \mathfrak{g} $ and $ l{\left( \mathfrak{a} \right)} $ is the “lacety” of $ \mathfrak{a} $ ; and (c) if $ \mathfrak{t} $ is a Cartan subalgebra of $ \mathfrak{g} $ and $ \alpha \in \mathfrak{t}^{*} $ root of $ \mathfrak{g} $ with respect to $ \mathfrak{t} $ , then $ \overline{{G{\left( {{\text{Ker}}\,\alpha \times {\text{Ker }}\alpha } \right)}}} $ is an irreducible component of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ of codimension 4 in $ {\user1{\mathcal{C}}} $ . This yields the bound $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ and, in particular, $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 2 $ . The latter may be regarded as an evidence in favor of the known longstanding conjecture that $ {\user1{\mathcal{C}}} $ is always normal. We also prove that the algebraic variety $ {\user1{\mathcal{C}}} $ is rational.  相似文献   

11.
We study the structure of a metric n-Lie algebra G over the complex field C. Let G = SR be the Levi decomposition, where R is the radical of G and S is a strong semisimple subalgebra of G. Denote by m(G) the number of all minimal ideals of an indecomposable metric n-Lie algebra and R ⊥ the orthogonal complement of R. We obtain the following results. As S-modules, R ⊥ is isomorphic to the dual module of G/R. The dimension of the vector space spanned by all nondegenerate invariant symmetric bilinear forms on G is equal to that of the vector space of certain linear transformations on G; this dimension is greater than or equal to m(G) + 1. The centralizer of R in G is equal to the sum of all minimal ideals; it is the direct sum of R ⊥ and the center of G. Finally, G has no strong semisimple ideals if and only if R⊥■R.  相似文献   

12.
For a broad class of Fréchet-Lie supergroups $ \mathcal{G} $ , we prove that there exists a correspondence between positive definite smooth (resp., analytic) superfunctions on $ \mathcal{G} $ and matrix coefficients of smooth (resp., analytic) unitary representations of the Harish-Chandra pair (G, $ \mathfrak{g} $ ) associated to $ \mathcal{G} $ . As an application, we prove that a smooth positive definite superfunction on $ \mathcal{G} $ is analytic if and only if it restricts to an analytic function on the underlying manifold of $ \mathcal{G} $ . When the underlying manifold of $ \mathcal{G} $ is 1-connected we obtain a necessary and sufficient condition for a linear functional on the universal enveloping algebra U( $ {{\mathfrak{g}}_{\mathbb{C}}} $ ) to correspond to a matrix coefficient of a unitary representation of (G, $ \mathfrak{g} $ ). The class of Lie supergroups for which the aforementioned results hold is characterised by a condition on the convergence of the Trotter product formula. This condition is strictly weaker than assuming that the underlying Lie group of $ \mathcal{G} $ is a locally exponential Fréchet-Lie group. In particular, our results apply to examples of interest in representation theory such as mapping supergroups and diffeomorphism supergroups.  相似文献   

13.
We prove that, for each simple graph G whose set of vertices is countably infinite, there is a family ${\varvec{\mathcal{R}}(\varvec{G})}$ of the cardinality of the continuum of graphs such that (1) each graph ${\varvec{H} \in \varvec{\mathcal{R}}(\varvec{G})}$ is isomorphic to G, all vertices of H are points of the Euclidean space E 3, all edges of H are straight line segments (the ends of each edge are the vertices joined by it), the intersection of any two edges of H is either their common vertex or empty, and any isolated vertex of H does not belong to any edge of H; (2) all sets ${\varvec{\mathcal{B}}(\varvec{H})}$ ( ${\varvec{H} \in \varvec{\mathcal{R}}(\varvec{G})}$ ), where ${\varvec{\mathcal{B}}(\varvec{H})\subset \mathbf{E}^3}$ is the union of all vertices and all edges of H, are pairwise not homeomorphic; moreover, for any graphs ${\varvec{H}_1 \in \varvec{\mathcal{R}}(\varvec{G})}$ and ${\varvec{H}_2 \in \varvec{\mathcal{R}}(\varvec{G})}$ , ${\varvec{H}_1 \ne \varvec{H}_2}$ , and for any finite subsets ${\varvec{S}_i \subset \varvec{\mathcal{B}}(\varvec{H}_i)}$ (i = 1, 2), the sets ${\varvec{\mathcal{B}}(\varvec{H}_1){\setminus} \varvec{S}_1}$ and ${\varvec{\mathcal{B}}(\varvec{H}_2){\setminus} \varvec{S}_2}$ are not homeomorphic.  相似文献   

14.
Let ${\mathfrak{g}=W_1}$ be the p-dimensional Witt algebra over an algebraically closed field ${k=\overline{\mathbb{F}}_q}$ , where p > 3 is a prime and q is a power of p. Let G be the automorphism group of ${\mathfrak{g}}$ . The Frobenius morphism F G (resp. ${F_\mathfrak{g}}$ ) can be defined naturally on G (resp. ${\mathfrak{g}}$ ). In this paper, we determine the ${F_\mathfrak{g}}$ -stable G-orbits in ${\mathfrak{g}}$ . Furthermore, the number of ${\mathbb{F}_q}$ -rational points in each ${F_\mathfrak{g}}$ -stable orbit is precisely given. Consequently, we obtain the number of ${\mathbb{F}_q}$ -rational points in the nilpotent variety.  相似文献   

15.
The authors introduce and investigate the Tc-Gorenstein projective, Lc- Gorenstein injective and Hc-Gorenstein flat modules with respect to a semidualizing module C which shares the common properties with the Gorenstein projective, injective and flat modules, respectively. The authors prove that the classes of all the Tc-Gorenstein projective or the Hc-Gorenstein flat modules are exactly those Gorenstein projective or flat modules which are in the Auslander class with respect to C, respectively, and the classes of all the Lc-Gorenstein 'injective modules are exactly those Gorenstein injective modules which are in the Bass class, so the authors get the relations between the Gorenstein projective, injective or flat modules and the C-Gorenstein projective, injective or flat modules. Moreover, the authors consider the Tc(R)-projective and Lc(R)-injective dimensions and Tc(R)-precovers and Lc(R)-preenvelopes. Fiually, the authors study the Hc-Gorenstein flat modules and extend the Foxby equivalences.  相似文献   

16.
Let N be a maximal and discrete nest on a separable Hilbert space H,E the projection from H onto the subspace[C]spanned by a particular separating vector for N′and Q the projection from K=H⊕H onto the closed subspace{(,):∈H}.Let L be the closed lattice in the strong operator topology generated by the projections(E 00 0),{(E 00 0):E∈N}and Q.We show that L is a Kadison-Singer lattice with trivial commutant,i.e.,L′=CI.Furthermore,we similarly construct some Kadison-Singer lattices in the matrix algebras M2n(C)and M2n.1(C).  相似文献   

17.
Let ${\pi=(d_{1},d_{2},\ldots,d_{n})}$ and ${\pi'=(d'_{1},d'_{2},\ldots,d'_{n})}$ be two non-increasing degree sequences. We say ${\pi}$ is majorizated by ${\pi'}$ , denoted by ${\pi \vartriangleleft \pi'}$ , if and only if ${\pi\neq \pi'}$ , ${\sum_{i=1}^{n}d_{i}=\sum_{i=1}^{n}d'_{i}}$ , and ${\sum_{i=1}^{j}d_{i}\leq\sum_{i=1}^{j}d'_{i}}$ for all ${j=1,2,\ldots,n}$ . If there exists one connected graph G with ${\pi}$ as its degree sequence and ${c=(\sum_{i=1}^{n}d_{i})/2-n+1}$ , then G is called a c-cyclic graph and ${\pi}$ is called a c-cyclic degree sequence. Suppose ${\pi}$ is a non-increasing c-cyclic degree sequence and ${\pi'}$ is a non-increasing graphic degree sequence, if ${\pi \vartriangleleft \pi'}$ and there exists some t ${(2\leq t\leq n)}$ such that ${d'_{t}\geq c+1}$ and ${d_{i}=d'_{i}}$ for all ${t+1\leq i\leq n}$ , then the majorization ${\pi \vartriangleleft \pi'}$ is called a normal majorization. Let μ(G) be the signless Laplacian spectral radius, i.e., the largest eigenvalue of the signless Laplacian matrix of G. We use C π to denote the class of connected graphs with degree sequence π. If ${G \in C_{\pi}}$ and ${\mu(G)\geq \mu(G')}$ for any other ${G'\in C_{\pi}}$ , then we say G has greatest signless Laplacian radius in C π . In this paper, we prove that: Let π and π′ be two different non-increasing c-cyclic (c ≥ 0) degree sequences, G and G′ be the connected c-cyclic graphs with greatest signless Laplacian spectral radii in C π and C π', respectively. If ${\pi \vartriangleleft \pi'}$ and it is a normal majorization, then ${\mu(G) < \mu(G')}$ . This result extends the main result of Zhang (Discrete Math 308:3143–3150, 2008).  相似文献   

18.
Let ${{\mathbb H}_n, n \geq 1}$ , be the near 2n-gon defined on the 1-factors of the complete graph on 2n?+?2 vertices, and let e denote the absolutely universal embedding of ${{\mathbb H}_n}$ into PG(W), where W is a ${\frac{1}{n+2} \left(\begin{array}{c}2n+2 \\ n+1\end{array}\right)}$ -dimensional vector space over the field ${{\mathbb F}_2}$ with two elements. For every point z of ${{\mathbb H}_n}$ and every ${i \in {\mathbb N}}$ , let Δ i (z) denote the set of points of ${{\mathbb H}_n}$ at distance i from z. We show that for every pair {x, y} of mutually opposite points of ${{\mathbb H}_n, W}$ can be written as a direct sum ${W_0 \oplus W_1 \oplus \cdots \oplus W_n}$ such that the following four properties hold for every ${i \in \{0,\ldots,n \}}$ : (1) ${\langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle = {\rm PG}(W_i)}$ ; (2) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(x) \right) \right\rangle = {\rm PG}(W_0 \oplus W_1 \oplus \cdots \oplus W_i)}$ ; (3) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(y) \right) \right\rangle = {\rm PG}(W_{n-i}\oplus W_{n-i+1} \oplus \cdots \oplus W_n)}$ ; (4) ${\dim(W_i) = |\Delta_i(x) \cap \Delta_{n-i}(y)| = \left(\begin{array}{c}n \\ i\end{array}\right)^2 - \left(\begin{array}{c}n \\ i-1\end{array}\right) \cdot \left(\begin{array}{c}n \\ i+1\end{array}\right)}$ .  相似文献   

19.
This paper is a survey of our recent results concerning metabelian varieties, and more specifically, varieties generated by wreath products of Abelian groups. We give a full classification of cases where sets of wreath products of Abelian groups $ \mathfrak{X} $ Wr $ \mathfrak{Y} $ = { X Wr Y | X ∈ $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } and $ \mathfrak{X} $ wr $ \mathfrak{Y} $ = {X wr Y | X $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } generate the product variety $ \mathfrak{X} $ var ( $ \mathfrak{Y} $ ).  相似文献   

20.
We find a set of necessary and sufficient conditions under which the weight ${w: E \rightarrow \mathbb{R}^{+}}$ on the graph G = (V, E) can be extended to a pseudometric ${d : V \times V \rightarrow \mathbb{R}^{+}}$ . We describe the structure of graphs G for which the set ${\mathfrak{M}_{w}}$ of all such extensions contains a metric whenever w is strictly positive. Ordering ${\mathfrak{M}_{w}}$ by the pointwise order, we have found that the posets $({\mathfrak{M}_{w}, \leqslant)}$ contain the least elements ρ 0,w if and only if G is a complete k-partite graph with ${k \, \geqslant \, 2}$ . In this case the symmetric functions ${f : V \times V \rightarrow \mathbb{R}^{+}}$ , lying between ρ 0,w and the shortest-path pseudometric, belong to ${\mathfrak{M}_{w}}$ for every metrizable w if and only if the cardinality of all parts in the partition of V is at most two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号