首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a group $G$ , denote by $\omega (G)$ the number of conjugacy classes of normalizers of subgroups of $G$ . Clearly, $\omega (G)=1$ if and only if $G$ is a Dedekind group. Hence if $G$ is a 2-group, then $G$ is nilpotent of class $\le 2$ and if $G$ is a $p$ -group, $p>2$ , then $G$ is abelian. We prove a generalization of this. Let $G$ be a finite $p$ -group with $\omega (G)\le p+1$ . If $p=2$ , then $G$ is of class $\le 3$ ; if $p>2$ , then $G$ is of class $\le 2$ .  相似文献   

2.
We prove that a finitely generated pro- $p$ group acting on a pro- $p$ tree $T$ with procyclic edge stabilizers is the fundamental pro- $p$ group of a finite graph of pro- $p$ groups with vertex groups being stabilizers of certain vertices of $T$ and edge groups (when non-trivial) being stabilizers of certain edges of $T$ , in the following two situations: (1) the action is $n$ -acylindrical, i.e., any non-identity element fixes not more than $n$ edges; (2) the group $G$ is generated by its vertex stabilizers. This theorem is applied to obtain several results about pro- $p$ groups from the class $\mathcal L $ defined and studied in Kochloukova and Zalesskii (Math Z 267:109–128, 2011) as pro- $p$ analogues of limit groups. We prove that every pro- $p$ group $G$ from the class $\mathcal L $ is the fundamental pro- $p$ group of a finite graph of pro- $p$ groups with infinite procyclic or trivial edge groups and finitely generated vertex groups; moreover, all non-abelian vertex groups are from the class $\mathcal L $ of lower level than $G$ with respect to the natural hierarchy. This allows us to give an affirmative answer to questions 9.1 and 9.3 in Kochloukova and Zalesskii (Math Z 267:109–128, 2011). Namely, we prove that a group $G$ from the class $\mathcal L $ has Euler–Poincaré characteristic zero if and only if it is abelian, and if every abelian pro- $p$ subgroup of $G$ is procyclic and $G$ itself is not procyclic, then $\mathrm{def}(G)\ge 2$ . Moreover, we prove that $G$ satisfies the Greenberg–Stallings property and any finitely generated non-abelian subgroup of $G$ has finite index in its commensurator.  相似文献   

3.
A subgroup $H$ of a finite group $G$ is weakly-supplemented in $G$ if there exists a proper subgroup $K$ of $G$ such that $G=HK$ . In this paper we prove that a finite group $G$ is $p$ -nilpotent if every minimal subgroup of $P\bigcap G^{N}$ is weakly-supplemented in $G$ , and when $p=2$ either every cyclic subgroup of $P\bigcap G^{N}$ with order 4 is weakly-supplemented in $G$ or $P$ is quaternion-free, where $p$ is the smallest prime number dividing the order of $G$ , $P$ a sylow $p$ -subgroup of $G$ .  相似文献   

4.
Let $p$ be the smallest prime divisor of the order of a finite group $G$ . We examine the structure of $G$ under the hypothesis that $p$ -subgroups of $G$ of certain orders are complemented in $G$ . In particular, we extend some recent results.  相似文献   

5.
6.
For a finite $p$ -group $G$ and a bounded below $G$ -spectrum $X$ of finite type mod  $p$ , the $G$ -equivariant Segal conjecture for $X$ asserts that the canonical map $X^G \rightarrow X^{hG}$ , from $G$ -fixed points to $G$ -homotopy fixed points, is a $p$ -adic equivalence. Let $C_{p^n}$ be the cyclic group of order  $p^n$ . We show that if the $C_p$ -equivariant Segal conjecture holds for a $C_{p^n}$ -spectrum $X$ , as well as for each of its geometric fixed point spectra $\varPhi ^{C_{p^e}}(X)$ for $0 < e < n$ , then the $C_{p^n}$ -equivariant Segal conjecture holds for  $X$ . Similar results also hold for weaker forms of the Segal conjecture, asking only that the canonical map induces an equivalence in sufficiently high degrees, on homotopy groups with suitable finite coefficients.  相似文献   

7.
Suppose that $G$ is a finite group and $H$ is a subgroup of $G$ . $H$ is said to be an $s$ -quasinormally embedded in $G$ if for each prime $p$ dividing the order of $H$ , a Sylow $p$ -subgroup of $H$ is also a Sylow $p$ -subgroup of some $S$ -quasinormal subgroup of $G$ ; $H$ is said to be $c$ -normal in $G$ if $G$ has a normal subgroup $T$ such that $G=HT$ and $H\cap T\le H_{G}$ , where $H_{G}$ is the normal core of $H$ in $G$ . We fix in every non-cyclic Sylow subgroup $P$ of $G$ some subgroup $D$ satisfying $1<|D|<|P|$ and study the structure of $G$ under the assumption that every subgroup $H$ of $P$ with $|H|=|D|$ is either $s$ -quasinormally embedded or $c$ -normal in $G$ . Some recent results are generalized and unified.  相似文献   

8.
Let $r$ be a prime and $G$ be a finite group, and let $R, \,S$ be Sylow $r$ -subgroups of $G$ and $\text{ PGL }(2, r)$ respectively. We prove the following results: (1) If $|G|=|\text{ PGL }(2, r)|$ and $|N_{G}(R)|=|N_{\mathrm{PGL}(2, r)} (S)|$ and $r$ is not a Mersenne prime, then $G$ is isomorphic to $\text{ PSL } (2, r) \times C_{2}, \,\text{ SL }(2, r)$ or $\text{ PGL }(2, r)$ . (2) If $|G|=|\text{ PGL }(2, r)|, \,|N_{G}(R)|=|N_{\mathrm{PGL}(2, r)}(S)|$ where $r>3$ is a Mersenne prime and $r$ is an isolated vertex of the prime graph of $G$ , then $G\cong \text{ PGL }(2, r)$ .  相似文献   

9.
We investigate the vanishing of the group $SK_1(\Lambda (G))$ for the Iwasawa algebra $\Lambda (G)$ of a pro- $p$ $p$ -adic Lie group $G$ (with $p \ne 2$ ). We reduce this vanishing to a linear algebra problem for Lie algebras over arbitrary rings, which we solve for Chevalley orders in split reductive Lie algebras.  相似文献   

10.
Let $G$ be a locally finite group which contains a non-cyclic subgroup $V$ of order four such that $C_{G}\left( V\right) $ is finite and $C_{G}\left( \phi \right)$ has finite exponent for some $\phi \in V$ . We show that $[G,\phi ]^{\prime }$ has finite exponent. This enables us to deduce that $G$ has a normal series $1\le G_1\le G_2\le G_3\le G$ such that $G_1$ and $G/G_2$ have finite exponents while $G_2/G_1$ is abelian. Moreover $G_3$ is hyperabelian and has finite index in $G$ .  相似文献   

11.
Let $G$ be a finite group and let ${\mathrm{Irr}}(G)$ denote the set of all complex irreducible characters of $G.$ Let ${\mathrm{cd}}(G)$ be the set of all character degrees of $G.$ For each positive integer $d,$ the multiplicity of $d$ in $G$ is defined to be the number of irreducible characters of $G$ having the same degree $d.$ The multiplicity pattern ${\mathrm{mp}}(G)$ is the vector whose first coordinate is $|G:G^{\prime }|$ and for $i\ge 1,$ the $(i+1)$ th-coordinate of ${\mathrm{mp}}(G)$ is the multiplicity of the $i$ th-smallest nontrivial character degree of $G.$ In this paper, we show that every nonabelian simple group with at most $7$ distinct character degrees is uniquely determined by the multiplicity pattern.  相似文献   

12.
Let $G$ be a unipotent algebraic group over an algebraically closed field $\mathtt{k }$ of characteristic $p>0$ and let $l\ne p$ be another prime. Let $e$ be a minimal idempotent in $\mathcal{D }_G(G)$ , the $\overline{\mathbb{Q }}_l$ -linear triangulated braided monoidal category of $G$ -equivariant (for the conjugation action) $\overline{\mathbb{Q }}_l$ -complexes on $G$ under convolution (with compact support) of complexes. Then, by a construction due to Boyarchenko and Drinfeld, we can associate to $G$ and $e$ a modular category $\mathcal{M }_{G,e}$ . In this paper, we prove that the modular categories that arise in this way from unipotent groups are precisely those in the class $\mathfrak{C }_p^{\pm }$ .  相似文献   

13.
If $G$ is a triangle-free graph, then two Gallai identities can be written as $\alpha (G)+\overline{\chi }(L(G))=|V(G)|=\alpha (L(G))+\overline{\chi }(G)$ , where $\alpha $ and $\overline{\chi }$ denote the stability number and the clique-partition number, and $L(G)$ is the line graph of  $G$ . We show that, surprisingly, both equalities can be preserved for any graph $G$ by deleting the edges of the line graph corresponding to simplicial pairs of adjacent arcs, according to any acyclic orientation of  $G$ . As a consequence, one obtains an operator $\Phi $ which associates to any graph parameter $\beta $ such that $\alpha (G) \le \beta (G) \le \overline{\chi }(G)$ for all graph $G$ , a graph parameter $\Phi _\beta $ such that $\alpha (G) \le \Phi _\beta (G) \le \overline{\chi }(G)$ for all graph $G$ . We prove that $\vartheta (G) \le \Phi _\vartheta (G)$ and that $\Phi _{\overline{\chi }_f}(G)\le \overline{\chi }_f(G)$ for all graph  $G$ , where $\vartheta $ is Lovász theta function and $\overline{\chi }_f$ is the fractional clique-partition number. Moreover, $\overline{\chi }_f(G) \le \Phi _\vartheta (G)$ for triangle-free $G$ . Comparing to the previous strengthenings $\Psi _\vartheta $ and $\vartheta ^{+ \triangle }$ of $\vartheta $ , numerical experiments show that $\Phi _\vartheta $ is a significant better lower bound for $\overline{\chi }$ than $\vartheta $ .  相似文献   

14.
Let $G$ be a finite group. A subgroup $H$ of $G$ is called an $\mathcal{H }$ -subgroup of $G$ if $N_G(H)\cap H^g\le H$ for all $g\in G$ . A group $G$ is said to be an ${\mathcal{H }}_p$ -group if every cyclic subgroup of $G$ of prime order or order 4 is an $\mathcal{H }$ -subgroup of $G$ . In this paper, the structure of a finite group all of whose second maximal subgroups are ${\mathcal{H }}_p$ -subgroups has been characterized.  相似文献   

15.
Let $(B,\mathcal{M }_B)$ be a noetherian regular local ring of dimension $2$ with residue field $B/\mathcal{M }_B$ of characteristic $p>0$ . Assume that $B$ is endowed with an action of a finite cyclic group $H$ whose order is divisible by $p$ . Associated with a resolution of singularities of $\mathrm{Spec}B^H$ is a resolution graph $G$ and an intersection matrix $N$ . We prove in this article three structural properties of wild quotient singularities, which suggest that in general, one should expect when $H= \mathbb{Z }/p\mathbb{Z }$ that the graph $G$ is a tree, that the Smith group $\mathbb{Z }^n/\mathrm{Im}(N)$ is killed by $p$ , and that the fundamental cycle $Z$ has self-intersection $|Z^2|\le p$ . We undertake a combinatorial study of intersection matrices $N$ with a view towards the explicit determination of the invariants $\mathbb{Z }^n/\mathrm{Im}(N)$ and $Z$ . We also exhibit explicitly the resolution graphs of an infinite set of wild $\mathbb{Z }/2\mathbb{Z }$ -singularities, using some results on elliptic curves with potentially good ordinary reduction which could be of independent interest.  相似文献   

16.
A group $G$ is called a $\mathcal{P }_1$ -group if it has a normal series of finite length whose factors have rank $1$ , while $G$ is an $\mathcal{H }_1$ -group if it has an ascending normal series of the same type. This paper investigates properties of $\mathcal{P }_1$ -groups and $\mathcal{H }_1$ -groups which correspond to known properties of nilpotent and supersoluble groups.  相似文献   

17.
A subgroup $A$ of a finite group $G$ is said to be $S$ -permutably embedded in $G$ if for each prime $p$ dividing the order of $A$ , every Sylow $p$ -subgroup of $A$ is a Sylow $p$ -subgroup of some $S$ -permutable subgroup of $G$ . In this paper we determine how the $S$ -permutable embedding of several families of subgroups of a finite group influences its structure.  相似文献   

18.
19.
In this paper, we develop new methods to study generalized normal homogeneous Riemannian manifolds. In particular, we obtain a complete classification of generalized normal homogeneous Riemannian metrics on spheres ${S^n}$ . We prove that for any connected (almost effective) transitive on $S^n$ compact Lie group $G$ , the family of $G$ -invariant Riemannian metrics on $S^n$ contains generalized normal homogeneous but not normal homogeneous metrics if and only if this family depends on more than one parameters and $n\ge 5$ . Any such family (that exists only for $n=2k+1$ ) contains a metric $g_\mathrm{can}$ of constant sectional curvature $1$ on $S^n$ . We also prove that $(S^{2k+1}, g_\mathrm{can})$ is Clifford–Wolf homogeneous, and therefore generalized normal homogeneous, with respect to $G$ (except the groups $G={ SU}(k+1)$ with odd $k+1$ ). The space of unit Killing vector fields on $(S^{2k+1}, g_\mathrm{can})$ from Lie algebra $\mathfrak g $ of Lie group $G$ is described as some symmetric space (except the case $G=U(k+1)$ when one obtains the union of all complex Grassmannians in $\mathbb{C }^{k+1}$ ).  相似文献   

20.
Let $\Gamma $ be a lattice in a connected semisimple Lie group $G$ with trivial center and no compact factors. We introduce a volume invariant for representations of $\Gamma $ into $G$ , which generalizes the volume invariant for representations of uniform lattices introduced by Goldman. Then, we show that the maximality of this volume invariant exactly characterizes discrete, faithful representations of $\Gamma $ into $G$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号