共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
5.
6.
通过求解PIN二极管基区双极载流子扩散方程得到了限幅器Pspice等效电路模型, 根据PIN二极管物理参数与温度的关系, 数值计算得到了PIN二极管限幅器在多个温度点的功率响应特性, 发现温度的升高会使限幅器内部损耗增加, 加剧限幅器内部热损伤。并利用恒温控制系统进行了实验验证, 实验结果与数值计算结果相符合。实验还发现高温热冲击可能使限幅器限幅能力大幅下降, 可能成为通信系统的重大安全隐患。 相似文献
7.
研究了具有不同台阶数目的AlGaN插入层对在6H-SiC衬底上利用金属有机物气相外延(MOVPE)生长的GaN体材料残余应力和表面形貌的影响.高分辨率X射线衍射测试表明样品的c轴晶格常数随台阶数目的增多而增大;低温光荧光谱中GaN发光峰也随着台阶数目增多而发生蓝移,这些变化都反映出GaN中残余张应力的减小.此外,原子力显微镜测试表明样品表面起伏和粗糙度也都随着插入层的引入和台阶数目的增多得到了明显的改善.
关键词:
残余应力
表面形貌
SiC衬底
AlGaN插入层 相似文献
8.
快脉冲直线变压器型驱动源(FLTD)是近年来快速发展的新型脉冲功率源技术,多采用多间隙气体开关作为开关器件。电晕均压措施有利于提升开关击穿性能,但不同气体中电晕放电有显著区别。本文首先研究了空气中针电极对单间隙电晕放电特性的影响,确定了电晕针电极的尺寸,之后研究了N2,CO2,SF6/N2混合气体、C4F7N/N2混合气体中的电晕放电特性,研究了电晕均压6间隙气体开关击穿电压及其稳定性随气体种类和气压的变化规律。实验结果表明,N2中电晕电流较大且不稳定,空气中电晕电流比N2中低,且电晕放电较为稳定,微量强电负性气体加入会极大降低电晕放电电流。当采用空气和N2作绝缘介质时,气体开关击穿电压随气压升高线性增加,但存在低值击穿,微量强电负性气体混合N2可显著提升击穿电压的稳定性。1%SF6/99%N2混合气体在0.18 MPa时,击穿电压约为197.33 kV,标准偏差占击穿电压比例为1.50%,1% C4F7N /99%N2混合气体在0.15 MPa时,击穿电压约为190.42 kV,标准偏差为0.55%。这表明,微量环保替代气体C4F7N与N2的混合气体对于提升多间隙气体开关击穿电压稳定性有显著作用。 相似文献
9.
10.
11.
Effects of gate-buffer combined with a p-type spacer structure on silicon carbide metalben semiconductor field-effect transistors 下载免费PDF全文
An improved structure of silicon carbide metal-semiconductor field-effect transistors (MESFET) is proposed for high power microwave applications. Numerical models for the physical and electrical mechanisms of the device are presented, and the static and dynamic electrical performances are analysed. By comparison with the conventional structure, the proposed structure exhibits a superior frequency response while possessing better DC characteristics. A p-type spacer layer, inserted between the oxide and the channel, is shown to suppress the surface trap effect and improve the distribution of the electric field at the gate edge. Meanwhile, a lightly doped n-type buffer layer under the gate reduces depletion in the channel, resulting in an increase in the output current and a reduction in the gate-capacitance. The structural parameter dependences of the device performance are discussed, and an optimized design is obtained. The results show that the maximum saturation current density of 325 mA/mm is yielded, compared with 182 mA/mm for conventional MESFETs under the condition that the breakdown voltage of the proposed MESFET is larger than that of the conventional MESFET, leading to an increase of 79% in the output power density. In addition, improvements of 27% cut-off frequency and 28% maximum oscillation frequency are achieved compared with a conventional MESFET, respectively. 相似文献
12.
Effects of gate-buffer combined with a p-type spacer structure on silicon carbide metal-semiconductor field-effect transistors 下载免费PDF全文
Song Kun Chai Chang-Chun Yang Yin-Tang Chen Bin Zhang Xian-Jun Ma Zhen-Yang 《中国物理 B》2012,21(1):17202-17202
An improved structure of silicon carbide metal-semiconductor field-effect transistors (MESFET) is proposed for high power microwave applications. Numerical models for the physical and electrical mechanisms of the device are presented, and the static and dynamic electrical performances are analysed. By comparison with the conventional structure, the proposed structure exhibits a superior frequency response while possessing better DC characteristics. A p-type spacer layer, inserted between the oxide and the channel, is shown to suppress the surface trap effect and improve the distribution of the electric field at the gate edge. Meanwhile, a lightly doped n-type buffer layer under the gate reduces depletion in the channel, resulting in an increase in the output current and a reduction in the gate-capacitance. The structural parameter dependences of the device performance are discussed, and an optimized design is obtained. The results show that the maximum saturation current density of 325 mA/mm is yielded, compared with 182 mA/mm for conventional MESFETs under the condition that the breakdown voltage of the proposed MESFET is larger than that of the conventional MESFET, leading to an increase of 79% in the output power density. In addition, improvements of 27% cut-off frequency and 28% maximum oscillation frequency are achieved compared with a conventional MESFET, respectively. 相似文献
13.
Design consideration and fabrication of 1.2-kV 4H-SiC trenched-and-implanted vertical junction field-effect transistors 下载免费PDF全文
We present the design consideration and fabrication of 4H-SiC trenched-and-implanted vertical junction field-effect transistors (TI-VJFETs). Different design factors, including channel width, channel doping, and mesa height, are con- sidered and evaluated by numerical simulations. Based on the simulation result, normally-on and normally-off devices are fabricated. The fabricated device has a 12 μm thick drift layer with 8 × 10^15 cm^-3 N-type doping and 2.6 μm channel length. The normally-on device shows a 1.2 kV blocking capability with a minimum on-state resistance of 2.33 mΩ.cm2, while the normally-off device shows an on-state resistance of 3.85 mΩ.cm2. Both the on-state and the blocking performances of the device are close to the state-of-the-art values in this voltage range. 相似文献
14.
基于器件物理分析方法,结合高场迁移率、肖特基栅势垒降低、势垒隧穿等物理模型, 分析了改进型异质栅结构对深亚微米栅长碳化硅肖特基栅场效应晶体管沟道电势、 夹断电压以及栅下电场分布的影响.通过与传统栅结构器件特性的对比表明, 异质栅结构在碳化硅肖特基栅场效应晶体管的沟道电势中引入了多阶梯分布,加强了近源端电场; 另一方面,相比于双栅器件,改进型异质栅器件沟道最大电势的位置远离源端, 因此载流子在沟道中加速更快,在一定程度上屏蔽了漏压引起的电势变化,更好抑制了短沟道效应. 此外,研究了不同结构参数的异质栅对短沟道器件特性的影响,获得了优化的设计方案, 减小了器件的亚阈值倾斜因子.为发挥碳化硅器件在大功率应用中的优势,设计了非对称异质栅结构, 改善了栅电极边缘的电场分布,提高了小栅长器件的耐压. 相似文献
15.
16.
New 4H silicon carbide metal semiconductor field-effect transistor with a buffer layer between the gate and the channel layer 下载免费PDF全文
A new 4H silicon carbide metal semiconductor field-effect transistor (4H-SiC MESFET) structure with a buffer layer between the gate and the channel layer is proposed in this paper for high power microwave applications. The physics-based analytical models for calculating the performance of the proposed device are obtained by solving one- and two-dimensional Poisson's equations. In the models, we take into account not only two regions under the gate but also a third high field region between the gate and the drain which is usually omitted. The direct-current and the alternating-current performances for the proposed 4H-SiC MESFET with a buffer layer of 0.2 μ m are calculated. The calculated results are in good agreement with the experimental data. The current is larger than that of the conventional structure. The cutoff frequency (fT) and the maximum oscillation frequency (fmax) are 20.4 GHz and 101.6 GHz, respectively, which are higher than 7.8 GHz and 45.3 GHz of the conventional structure. Therefore, the proposed 4H-SiC MESFET structure has better power and microwave performances than the conventional structure. 相似文献
17.
New 4H silicon carbide metal semiconductor field-effect transistor with a buffer layer between the gate and the channel layer 下载免费PDF全文
A new 4H silicon carbide metal semiconductor field-effect transistor (4H-SiC MESFET) structure with a buffer layer between the gate and the channel layer is proposed in this paper for high power microwave applications.The physics-based analytical models for calculating the performance of the proposed device are obtained by solving one-and two-dimensional Poisson’s equations.In the models,we take into account not only two regions under the gate but also a third high field region between the gate and the drain which is usually omitted.The direct-current and the alternatingcurrent performances for the proposed 4H-SiC MESFET with a buffer layer of 0.2 μm are calculated.The calculated results are in good agreement with the experimental data.The current is larger than that of the conventional structure.The cutoff frequency (fT) and the maximum oscillation frequency (f max) are 20.4 GHz and 101.6 GHz,respectively,which are higher than 7.8 GHz and 45.3 GHz of the conventional structure.Therefore,the proposed 4H-SiC MESFET structure has better power and microwave performances than the conventional structure. 相似文献
18.
Numerical and experimental study of the mesa configuration in high-voltage 4H–SiC PiN rectifiers 下载免费PDF全文
The effect of the mesa configuration on the reverse breakdown characteristic of a SiC PiN rectifier for high-voltage applications is analyzed in this study.Three geometrical parameters,i.e.,mesa height,mesa angle and mesa bottom corner,are investigated by numerical simulation.The simulation results show that a deep mesa height,a small mesa angle and a smooth mesa bottom(without sub-trench) could contribute to a high breakdown voltage due to a smooth and uniform surface electric field distribution.Moreover,an optimized mesa structure without sub-trench(mesa height of 2.2 μm and mesa angle of 20°) is experimentally demonstrated.A maximum reverse blocking voltage of 4 kV and a forward voltage drop of 3.7 V at 100 A/cm~2 are obtained from the fabricated diode with a 30-μm thick N~- epi-layer,corresponding to 85% of the ideal parallel-plane value.The blocking characteristic as a function of the JTE dose is also discussed for the PiN rectifiers with and without interface charge. 相似文献