首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the synthesis of single-walled carbon nanotubes (SWCNTs) from CH4 over a Fe/MgO catalyst, we proposed a coupled Downer-turbulent fluidized-bed (TFB) reactor to enhance the selectivity and yield (or production rate) of SWCNTs. By controlling a very short catalyst residence time (1–3 s) in the Downer, only part of Fe oxides can be reduced to form Fe nano particles (NPs) available for the growth of SWCNTs. The percentage of unreduced Fe oxides increased and the yield of SWCNTs decreased accordingly with the increase of catalyst feeding rate in Downer. SWCNTs were preferentially grown on the catalyst surface and inhibited the sintering of the Fe crystallites which would be formed thereafter in the downstream TFB, evidenced by TEM, Raman and TGA. The coupled Downer-turbulent fluidized-bed reactor technology allowed higher selectivity and higher production rate of SWCNTs as compared to TFB alone.  相似文献   

2.
A technique of purifying SWCNTs has been developed by means of oxidizing carbonaceous particles with air using fluidized-bed. Air was introduced into the fluidized-bed by pump with controllable flux. The powders were "boiling" at a temperature of 550 degrees C for 50 min. With this technique, the flux can be controlled simply. The fluidized-bed was applied as the heating apparatus instead of rotated quartz tubes. The air and the powders can be mixed with each other more sufficiently. Characteristics of the raw and purified powder were presented using Raman spectroscopy and transmission electronic microscopy (TEM), revealing that the purified powder is free from carbonaceous particles.  相似文献   

3.
通过浸渍及水热处理获得MgO负载的Fe基催化剂,并将其用于化学气相沉积过程裂解甲烷获得碳纳米管.结果表明,单/双/多壁碳纳米管可选择性地生长在Fe负载量不同的Fe/MgO催化剂上.当Fe负载量仅为0.5%时,铁原子在载体表面烧结为0.8~1.2nm的铁颗粒,碳在这种小颗粒上以表面扩散为主,导致单壁碳纳米管形成,并且单壁碳纳米管的选择性高达90%.当Fe负载量提高到3%时,铁原子聚集成约2.0nm的颗粒,在化学气相沉积中生长碳纳米管时,碳在Fe催化剂颗粒中的体相扩散的贡献增大,在表相扩散和体相扩散的共同作用下,双壁碳纳米管的选择性显著增高.当进一步增加Fe负载量时,铁原子烧结形成1~8nm的颗粒,经过化学气相沉积,在催化剂上生长了单、双、多壁碳纳米管.随着Fe在MgO载体上负载量的增加,管径、管壁数以及半导体管的含量都增加.本研究提供了一种适合大批量选择性生长单/双/多壁碳纳米管的方法.  相似文献   

4.
Semiconducting single-walled carbon nanotubes (s-SWCNTs) with a mean diameter of 1.6 nm were synthesized on a large scale by using oxygen-assisted floating catalyst chemical vapor deposition. The oxygen introduced can selectively etch metallic SWCNTs in situ, while the sulfur growth promoter functions in promoting the growth of SWCNTs with a large diameter. The electronic properties of the SWCNTs were characterized by laser Raman spectroscopy, absorption spectroscopy, and field effect transistor measurements. It was found that the content of s-SWCNTs in the samples was highly sensitive to the amount of oxygen introduced. Under optimum synthesis conditions, enriched s-SWCNTs can be obtained in milligram quantities per batch.  相似文献   

5.
Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.  相似文献   

6.
The effects of additives containing iron or nickel during chemical vapor deposition(CVD)on the growth of carbon nanotubes(CNTs)by methane decomposition on Mo/MgO catalyst were investigated. Ferrocene and nickel nitrate were introduced as deactivation inhibitors by in-situ evaporation during CVD. The precisely controlled in-situ introduction of these inhibitors increased the surface renewal of catalyst, and therefore prevented the catalyst from deactivation.Using this method,aligned multi-walled CNTs with parallel mesopores can be produced on a large scale.  相似文献   

7.
Chirality-controlled synthesis of single-walled carbon nanotubes (SWCNTs) is a prerequisite for their practical applications in electronic and optoelectronic devices. We report here a novel bimetallic CoPt catalyst for the selective growth of high quality SWCNTs with a narrow chirality distribution at relatively high temperatures of 800 °C and 850 °C using atmospheric pressure alcohol chemical vapor deposition. The addition of Pt into a Co catalyst forms a CoPt alloy and significantly reduces the diameters of the as-grown SWCNTs and narrows their chirality distributions.  相似文献   

8.
To understand in-depth the nature of the catalyst and the growth mechanism of single-walled carbon nanotubes (SWCNTs) on a newly developed silica catalyst, we performed this combined experimental and theoretical study. In situ transmission electron microscopy (TEM) observations revealed that the active catalyst for the SWCNT growth is solid and amorphous SiO(x) nanoparticles (NPs), suggesting a vapor-solid-solid growth mechanism. From in situ TEM and chemical vapor deposition growth experiments, we found that oxygen plays a crucial role in SWCNT growth in addition to the well-known catalyst size effect. Density functional theory calculations showed that oxygen atoms can enhance the capture of -CH(x) and consequently facilitate the growth of SWCNTs on oxygen-containing SiO(x) NPs.  相似文献   

9.
助剂铬对Ni/MgO催化剂CVD法制备碳纳米管的促进作用   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法制备了助剂Cr改性的Ni/MgO催化剂, 用化学气相沉积(CVD)法在600 ℃下裂解甲烷生长碳纳米管, 研究了助剂Cr的引入对催化剂微结构和制备碳纳米管性能的影响. 催化剂样品用XRD, TPR和CO-TPD进行了分析, 制备的碳纳米管用TEM和XRD进行了表征. 实验结果表明, NiO和MgO之间存在着强相互作用而形成固溶体, Ni/MgO催化剂经氢气处理后其中的镍氧化物只有极少部分被还原成为镍. 助剂铬的引入明显促进了镍的还原, 使得催化剂表面的Ni活性中心数增多, 从而使催化剂的活性和性能得到了明显的改进. 在加入助剂后碳纳米管的产率明显增加, 当Cr质量分数为8%时, 碳纳米管的产量为未加助剂时产量的5倍, 碳纳米管和催化剂的质量比达到1928. 当Cr含量进一步增加时, Ni在催剂表面聚集形成大颗粒, 制备出的产品中含有大量的碳纳米纤维和无定形碳. 以8%Cr-Ni/MgO催化剂合成的碳纳米管具有比较高的产率且质量较好.  相似文献   

10.
Pt-CeO2-ZrO2/MgO (Pt-CZ/MgO) catalysts with 0.8 wt% Pt, 3.0 wt% CeO2 and 3.0 wt% ZrO2 were prepared by wet impregnation method. Support MgO was obtained using ion exchange resin method or using commercial MgO. XRD, BET, SEM, TEM, DTA-TG and CO2-TPD were used to characterize the catalysts. CH4-CO2 reforming to synthesis gas (syngas) was performed to test the catalytic behavior of the catalysts. The catalyst Pt-CZ/MgO-IE(D) prepared using ion exchange resin exhibits more regular structure, smaller and more unique particle sizes, and stronger basicity than the catalyst Pt-CZ/MgO prepared from commercial MgO. At 1073 K and atmospheric pressure, Pt-CZ/MgO-IE(D) catalyst has a higher activity and greater stability than Pt-CZ/MgO catalyst for CH4-CO2 reforming reaction at high gas hourly space velocity of 36000 mL/(g·h) with a stoichiometric feed of CH4 and CO2. Activity measurement and characterization results demonstrate that modification of the support using ion exchange resin method can promote the surface structural property and stability, therefore enhancing the activity and stability for CH4-CO2 reforming reaction.  相似文献   

11.
Unbranched and branched carbon nanotubes (CNTs) were synthesized by catalytic chemical vapor deposition from methane at 900 °C over a Cu/MgO catalyst. Morphology and structure of the CNTs were characterized by scanning and transmission electron microscopy, and Raman spectroscopy. The effect of methane flow rate on the CNT growth was investigated. The results suggest that the products were transformed from unbranched to branched CNTs with an increase in methane flow rate. The simplicity and controllability of such a preparation technique make it a promising method to synthesize different carbon nanotube structures.  相似文献   

12.
A new method to grow bulk quantities of single-walled carbon nanotubes (SWCNTs) by a catalytic chemical vapor deposition (CVD) process with the possibility of varying the pressure has been developed and is reported in this paper. Thermal decomposition of ferrocene provides both catalytic particles and carbon sources for SWCNT growth using Ar as a carrier gas. Upon an increase in the pressure, the mean diameter of the SWCNTs decreases. In fact, high abundances of SWCNT with diameters as small as 0.7 nm, which is the limit for stable caps with isolated pentagons, can be obtained. An additional advantage of this method is that as no external carbon sources are required, SWCNT synthesis can be achieved at temperatures as low as 650 degrees C.  相似文献   

13.
The possibility of fast, narrow-size/chirality nucleation of thin single-walled carbon nanotubes (SWCNTs) at low, device-tolerant process temperatures in a plasma-enhanced chemical vapor deposition (CVD) is demonstrated using multiphase, multiscale numerical experiments. These effects are due to the unique nanoscale reactive plasma chemistry (NRPC) on the surfaces and within Au catalyst nanoparticles. The computed three-dimensional process parameter maps link the nanotube incubation times and the relative differences between the incubation times of SWCNTs of different sizes/chiralities to the main plasma- and precursor gas-specific parameters and explain recent experimental observations. It is shown that the unique NRPC leads not only to much faster nucleation of thin nanotubes at much lower process temperatures, but also to better selectivity between the incubation times of SWCNTs with different sizes and chiralities, compared to thermal CVD. These results are used to propose a time-programmed kinetic approach based on fast-responding plasmas which control the size-selective, narrow-chirality nucleation and growth of thin SWCNTs. This approach is generic and can be used for other nanostructure and materials systems.  相似文献   

14.
Single-walled carbon nanotubes (SWCNTs) were treated with sulfuric acid at 300 °C to synthesize sulfonated SWCNTs (s-SWCNTs), which were characterized by electron microscopy, infrared, Raman and X-ray photoelectron spectroscopy, and thermo analysis. Compared with activated carbon, more sulfonic acid groups can be introduced onto the surfaces of SWCNTs. The high degree (∼20 wt%) of surface sulfonation led to hydrophilic sidewalls that allows the SWCNTs to be uniformly dispersed in water and organic solvents. The high surface acidity of s-SWCNTs was demonstrated by NH3 temperature-programmed desorption technique and tested by an acetic acid esterification reaction catalyzed by s-SWCNTs. The results show that the water-dispersive s-SWCNTs are an excellent solid acid catalyst and demonstrate the potential of SWCNTs in catalysis applications.  相似文献   

15.
用真空高温炉对在纳米聚团流化床中用催化裂解法大批量制备的多壁碳纳米管进行了1500~2150℃的真空高温处理,并用高分辨透射电镜、激光拉曼、X射线晶体衍射及热重分析表征热处理效果.结果证明,高温处理对碳纳米管具有显著的整形作用,激光拉曼光谱可以有效地表征高温整形效果,但是管壁的大缺陷很难得到修复.经过1800℃处理以后,碳纳米管中的金属催化剂和载体得到有效去除,产品纯度高达99%以上.  相似文献   

16.
Single-walled carbon nanotubes (SWCNTs) were directly synthesized by a hydrogen arc-discharge method by using only Fe catalyst. The synthesized carbon materials indicated high-purity SWCNTs without amorphous carbon materials from SEM observation. The SWCNTs had diameters of 1.5-2.0 nm from TEM and Raman observation. After a simple purification, TGA indicated that SWCNTs had a purity of ca. 90.1 wt %. Field emission from the SWCNT emitters which were fabricated by using a spray method was measured by a diode structure. The vertically aligned SWCNT emitters showed the low turn-on voltage of 0.86 V/microm and a high emission-current density of 3 mA/cm2 at an applied field of about 3 V/microm. From a Fowler-Nordheim plot, the vertically aligned SWCNT revealed a high field enhancement factor of 2.35 x 10(4). The photoemission measurements, excited by a photon energy of 360 eV, showed significantly delocalized graphite-pi states at the purified SWCNTs. Here, we investigated that the field-emission properties of SWCNTs would be attributed to the high electronic density of states near Fermi energy, including the delocalized graphite-pi states.  相似文献   

17.
Ferrocene was dissolved in alcohol and such solution was used as the catalyst and carbon sources for the first time for producing single-walled carbon nanotubes (SWCNTs). This is different from the previous studies in which the catalyst was supported on either zeolite or a substrate when alcohol was used as the carbon source. Because of the use of a floating catalyst, SWCNTs could be produced continuously. Because of the use of alcohol, the formation of impurities, such as amorphous carbon, multi-walled carbon nanotubes and carbon nanoparticles were suppressed. Due to the simplicity of the present technique, it may be suitable for scale-up for mass production.  相似文献   

18.
Direct synthesis of large-scale ternary boron carbonitride single-walled nanotubes (BCN-SWNTs) via a bias-assisted HFCVD process was presented. The BCN-SWNTs were grown over the powdery Fe-Mo/MgO catalyst by using CH4, B2H6, and ethylenediamine vapor as the reactant gases. As high as 16 atom % nitrogen can be incorporated within the nanotube shells, with the boron content in the range of 2-4 atom %. The ternary covalent bonding nature of the BCN-SWNTs was well characterized, and the B, C, and N elemental maps were clearly imaged by energy-filtered transmission electron microscopy.  相似文献   

19.
以Cu(acac)2为金属有机铜前体,层状MgO为载体,采用金属有机化学气相沉积方法(MOCVD)制备了Cu/MgO催化剂,并通过X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、场发射扫描电镜(FE-SEM)、透射电子显微镜(TEM)和N2物理吸附等方法对Cu/MgO催化剂结构进行表征。结果表明,有机铜前体沉积在了MgO上,并且在沉积后,载体MgO的晶体结构仍然保留完整。利用生物质平台分子γ-戊内酯加氢反应来评价Cu/MgO催化剂的催化性能。研究表明,在473 K和10 MPa反应条件下,18% Cu/MgO催化剂表现出优异的催化活性(90.5%)和1,4-戊二醇选择性(94.4%),且催化剂循环三次,催化活性没有显著降低。  相似文献   

20.
Double‐walled carbon nanotubes (DWCNTs) are materials in high demand due to their superior properties. However, it is very challenging to prepare DWCNTs samples of high purity. In particular, the removal of single‐walled carbon nanotubes (SWCNTs) contaminants is a major problem. Here, a procedure for a selective removal of thin‐diameter SWCNTs from their mixtures with DWCNTs by lithium vapor treatment is investigated. The results are evaluated by Raman spectroscopy and in situ Raman spectroelectrochemistry. It is shown that the amount of SWCNTs was reduced by about 35 % after lithium vapor treatment of the studied SWCNTs–DWCNTs mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号