首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The composition of vodkas, rectified food alcohols, cognacs, cognac spirits, and other strong alcoholic beverages was studied by chromatography and compared with the composition of industrial (synthetic and hydrolysis) ethyl alcohols, adulterated cognacs, and homemade spirits (samogon) from the illicit market. It was found that the majority of the test alcohol-containing liquids were close to commercial alcoholic beverages in terms of chemical composition and toxic properties. The samples containing ethylene glycol and enriched components of the head fraction of rectification should be considered most toxic.  相似文献   

2.
To improve the reliability and information content of the quality control of cognacs and cognac spirits and to detect the signs of adulterated products, quality tests and methods for the instrumental analysis of cognacs and brandies by gas chromatography, high-performance liquid chromatography, gas chromatography-mass spectrometry, and UV-VIS spectrophotometry are considered. A set of marker substances, the concentrations of and ratios between which allow one to detect various types of adulterations and violations in manufacturing processes, was determined and methodologically substantiated. The marker substances were tentatively subdivided into several groups: volatile components, which are characteristic of cognac and affect its organoleptic properties; oak-wood substances, which are accumulated in cognac spirit in the course of aging; flavoring components; denaturing agents; and other substances that are uncharacteristic of cognac. Particular kinds of cognac products were experimentally examined, and the most characteristic types of adulterations and technological violations in the manufacture of both domestically produced and imported cognac products were exemplified. Recommendations on the effective quality control of cognac products are given, and a high level of identification methods in use is noted.__________Translated from Zhurnal Analiticheskoi Khimii, Vol. 60, No. 8, 2005, pp. 848–868.Original Russian Text Copyright © 2005 by Savchuk, Kolesov.  相似文献   

3.
Studies on the determination of seven kinds of phthalates, i.e. diethyl phthalate, dipropyl phthalate, dibutyl phthalate, benzyl butyl phthalate, dicyclohexyl phthalate, di-(2-ethylhexyl) phthalate, and dioctyl phthalate, and four parabens, i.e. methylparaben, ethylparaben, propylparaben, and butylparaben, in 15 kinds of cosmetic products, including hair sprays, perfumes, deodorants, cream, lotion, etc., by HPLC with diode array detection and GC-MS in electron impact ionization mode with selected-ion monitoring have been carried out. Methods have been developed for both qualitative and quantitative detection of phthalates and parabens. Extraction, clean-up, and analysis procedures have been optimized. HPLC and GC-MS determinations were performed after sonication-assisted extraction with methanol and clean-up with C18 SPE. These techniques permit detection of phthalates at a level of 10.0-100.0 microg/kg and of parabens at a level of 20.0-200.0 microg/kg. Overall recoveries were 85-108% with RSD values of 4.2-8.8%. Only one of the 15 examined samples was free from phthalates and parabens. The remaining 14 samples were found to contain at least three or more of these phthalates and/or parabens. The predominant phthalates and parabens detected in the studied samples were methylparaben, propylparaben, diethyl phthalate, dibutyl phthalate, dicyclohexyl phthalate, and di-(2-ethylhexyl) phthalate. The residue level is at 1.22-5289 mg/kg.  相似文献   

4.
A direct analytical method based on spray‐inlet microwave plasma torch tandem mass spectrometry was applied to simultaneously determine 4 phthalate esters (PAEs), namely, benzyl butyl phthalate, diethyl phthalate, dipentyl phthalate, and dodecyl phthalate with extremely high sensitivity in spirits without sample treatment. Among the 4 brands of spirit products, 3 kinds of PAE compounds were directly determined at very low concentrations from 1.30 to 114 ng·g−1. Compared with other online and off‐line methods, the spray‐inlet microwave plasma torch tandem mass spectrometry technique is extremely simple, rapid, sensitive, and high efficient, providing an ideal screening tool for PAEs in spirits.  相似文献   

5.
Electronic tongue for quality assessment of ethanol, vodka and eau-de-vie   总被引:1,自引:0,他引:1  
Rapid quality assessment of alcoholic beverages, including brand identification and detection of products of unacceptable quality or counterfeits is an important practical task. In the present work the multisensor electronic tongue system (ET), based on array of potentiometric chemical sensors was applied to recognition and classification of spirits such as vodka and ethanol used for vodka production and also for eau-de-vie in cognac production. The ET system was capable of detecting presence of contaminant substances in vodka in concentrations exceeding allowed levels as well as of distinguishing vodka complying and not complying with state quality standards. Ten brands of vodka produced at the same distillery using water and ethanol of different purity and various taste additives were discriminated using the instrument. The ET could distinguish synthetic and alimentary grain ethanol as well as alimentary ethanol of different grades (i.e. different degree of purification). A feasibility study was run on several eau-de-vie samples, which included fresh and aged eau-de-vie as well as samples produced using different distillation technology and samples kept in contact with different kinds of oak. The electronic tongue showed a promise as an analytical instrument for rapid quality assessment of spirits.  相似文献   

6.
《Analytical letters》2012,45(8):1355-1366
A rapid and efficient sample preparation method, which is called microwave-assisted microsolid phase extraction, was developed for the determination of endocrine disrupting chemicals in atmospheric particulate matter. The endocrine disrupting chemicals included bisphenol A, diethyl phthalate, dibutyl phthalate, and di(2-ethylhexyl) phthalate. The endocrine disrupting chemicals were isolated by microwave-assisted extraction following adsorption by copper(II) isonicotinate using microsolid phase extraction. The endocrine disrupting chemicals were subsequently determined by high performance liquid chromatography with an ultraviolet detector. The extraction was optimized for temperature, time, desorption time, and desorption solvent. Limits of detection (in the range of 2.0–8.5 nanograms per liter), limits of quantification (in the range of 6.6–28.0 nanograms per liter), and repeatability of the procedure (less than 10 percent) were established. Diethyl phthalate, diethyl phthalate, and di(2-ethylhexyl) phthalate were determined at values from 0.57 to 68.8 nanograms per cubic meter in atmospheric particulate matter collected from an urban area, a business center, and an industrial site in Dongguan, China. The concentration of bisphenol A was below the detection limit in these samples.  相似文献   

7.
采用静电纺丝法制备了聚酰胺6(PA6)纳米纤维膜, 结合固相萃取技术-液相色谱法(HPLC-UV)检测了市售牛奶样品中的6种邻苯二甲酸酯(PAEs)的含量. 对影响实验的各种因素, 如提取溶剂的种类及用量、超声时间、洗脱溶剂的种类及用量、纳米纤维膜的用量、pH及过样速度等进行了考察. 在最优化条件下, 邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸丁基苄酯(BBP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-乙基己)酯(DEHP)和邻苯二甲酸二正辛酯(DOP)的检出限分别为0.02, 0.01, 0.05, 0.05, 0.10和0.25 ng/mL. 将该方法应用于不同品牌不同包装牛奶样品的检测, 只需2.5 mg PA6纳米纤维膜, 即可完全萃取样品中的PAEs, 相对标准偏差(RSD)小于5.82%, 回收率为93.40%~104.83%. 该方法测定牛奶中PAEs环境雌激素, 检出限低, 灵敏度高, 结果准确可靠, 重现性好.  相似文献   

8.
基质固相分散-气相色谱/质谱法测定蔬菜中的邻苯二甲酸酯   总被引:13,自引:0,他引:13  
王明林  寇立娟  张玉倩  史衍玺 《色谱》2007,25(4):577-580
利用基质固相分散-气相色谱/质谱法测定了蔬菜中的邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二丁酯、邻苯二甲酸丁基苄基酯和邻苯二甲酸二异辛酯。蔬菜样品经弗罗里硅土和石墨化炭黑研磨均匀后,用乙酸乙酯淋洗净化,结果表明:上述5种邻苯二甲酸酯在0.05~10.00 mg/L 范围内具有良好的线性,样品的添加回收率为76%~90%,相对标准偏差为2%~7%,5种邻苯二甲酸酯的检出限为0.01~0.024 mg/kg。该方法操作简便、经济,分析速度快,适用于大批量样品的分析。  相似文献   

9.
The distribution of ethanol and butanol between n-hexane and aqueous solutions of ammonium sulfate at 20 ± 1°C was studied over an ideal concentration region of the substances in the organic phase. The distribution constants of the substances and the increments of the methylene and hydroxyl groups of the alcohols in the logarithm of the distribution constant were calculated. It was found that an increase in the salt concentration in the aqueous phase resulted in a considerable increase in the increment of the methylene group and significantly improved the alcohol separation efficiency. The dependence of the distribution coefficients of ethanol and butanol on the concentration of ethanol in the aqueous phase was studied. A dramatic decrease in the increment of the methylene group was found as the ethanol concentration in the salt phase was increased above 4.5 vol %. A procedure was developed for extraction sample preparation for the subsequent determination of the characteristic components of cognac products and for the authentication of these products by gas chromatography. The essence of this procedure consists in the hexane extraction of butanol and other hydrophobic substances from cognac product samples prediluted with an aqueous solution of ammonium sulfate. In this case, the major portion of ethanol, as well as hydrophilic and thermally unstable impurities, which complicate analysis with direct sample injection, remained in the salt solution. The procedure was tested with 16 samples of cognac and cognac spirits from Georgia, including both authentic and adulterated products.  相似文献   

10.
In this work, magnetic nanoporous carbon with high surface area and ordered structure was synthesized using cheap commercial silica gel as template and sucrose as the carbon source. The prepared magnetic nanoporous carbon was firstly used as an adsorbent for the extraction of phthalate esters, including diethyl phthalate, diallyl phthalate, and di‐n‐propyl‐phthalate, from lake water and aloe juice samples. Several parameters that could affect the extraction efficiency were optimized. Under the optimum conditions, the limit of detection of the method (S/N = 3) was 0.10 ng/mL for water sample and 0.20 ng/mL for aloe juice sample. The linearity was observed over the concentration range of 0.50–150.0 and 1.0–200.0 ng/mL for water and aloe juice samples, respectively. The results showed that the magnetic nanoporous carbon has a high adsorptive capability toward the target phthalate esters in water and aloe juice samples.  相似文献   

11.
We describe a highly sensitive micro‐solid‐phase extraction method for the pre‐concentration of six phthalate esters utilizing a TiO2 nanotube array coupled to high‐performance liquid chromatography with a variable‐wavelength ultraviolet visible detector. The selected phthalate esters included dimethyl phthalate, diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, bis(2‐ethylhexyl)phthalate and dioctyl phthalate. The factors that would affect the enrichment, such as desorption solvent, sample pH, salting‐out effect, extraction time and desorption time, were optimized. Under the optimum conditions, the linear range of the proposed method was 0.3–200 μg/L. The limits of detection were 0.04–0.2 μg/L (S/N = 3). The proposed method was successfully applied to the determination of six phthalate esters in water samples and satisfied spiked recoveries were achieved. These results indicated that the proposed method was appropriate for the determination of trace phthalate esters in environmental water samples.  相似文献   

12.
Phthalate esters are additives used in polyvinylchloride and are found as contaminants in many food products. An isotope dilution mass spectrometry technique has been developed for accurate analysis of 16 phthalate esters in Chinese spirits by adopting the 16 corresponding isotope‐labeled phthalate esters. The ethanol in the spirit sample was first removed by heating with a water bath at 100°C with a stream of nitrogen, after which the residue was extracted with n‐hexane twice. The phthalates collected were identified and quantified by gas chromatography with tandem mass spectrometry in multiple reaction monitoring mode. The spiking recoveries of 16 analytes ranged from 94.3 to 105.3% with relative standard deviation values of <6.5%. The detection limits for 16 analytes were <10.0 ng/g. The expanded relative uncertainties were from 3.0 to 14%. A survey was performed on Chinese spirits from the market. Six of the nine analyzed samples were contaminated by phthalates. Di‐n‐butyl phthalate and di‐2‐ethylhexyl phthalate showed higher detection frequency and concentrations. This isotope dilution gas chromatography with tandem mass spectrometry method is simple, rapid, accurate, and highly sensitive, which qualifies as a candidate reference method for the determination of phthalates in spirits.  相似文献   

13.
A method for the quantitative determination of easily volatile compounds in cognac (brandy) by headspace gas chromatography–mass spectrometry was developed. Alcohols and carboxylic acid aldehydes, acetals, and ethylates were identified by comparing their mass spectra with those presented in the Wiley database, and by comparing their relative retention times with those of reference materials of the known composition. Detection limits for test compounds ranged from 0.02 to 0.2 mg/L. Statistically valid difference in the concentration of compounds with different aromas or specific odors was demonstrated for cognacs aged for 3, 10, and 20 years. The concentration of cognac-flavored compounds, such as diethylacetal and carboxylic acid esters, for example, ethyl formate, significantly increased with age, whereas the concentration of alcohols (butanols, allyl alcohol, hexenol, and toxic methanol) considerably decreased. Comparison analyses of some Armenian, Moldavian, Georgian, Ukrainian, Russian, Kyrgyz, and French cognacs were carried out.  相似文献   

14.
The use of gas chromatography (GC), gas chromatography–mass spectrometry (GC–MS), and UV–VIS spectrophotometry for identifying the falsification of strong alcoholic beverages (vodka, gin, cognac, and whiskey) was considered. In the GC analysis of ethyl alcohol and vodkas based on it, the test alcohol was assigned to synthetic alcohol or to biochemically produced alcohol using a set of typical impurities, markers of the alcohol nature, which present in the test alcohol in a certain ratio and can be determined by GC or GC–MS analysis. The multicomponent analysis of cognacs and related liquors can reveal the replacement of cognac spirit with alcohol produced from nongrape raw materials, to determine whether the cognac spirit was in contact with oak wood and how long was the duration of its aging, and to detect the falsification of the age by adding certain ingredients. The limitations of chromatographic and spectrometric analytical techniques in the identification of adulterated alcoholic beverages was demonstrated. The validation criteria for testing the identification of alcoholic beverage components by chromatographic techniques received special attention.  相似文献   

15.
This paper demonstrates, for the first time, that adsorptive potential of bamboo charcoal for solid-phase extraction of phthalate esters was investigated. The four phthalate esters, dimethyl phthalate (DMP), diethyl phthalate (DEP), butyl benzyl phthalate (BBP) and di-n-butyl phthalate (DBP), are quantitatively adsorbed on a bamboo charcoal packed cartridge, then the analytes retained on the cartridge are quantitatively desorbed with optimum amounts of acetone. Finally, the analytes in the eluant acetone are determined by high-performance liquid chromatography-ultraviolet detectior. Important parameters influencing the extraction efficiency, such as eluant and its volume, flow rate of sample, sample volume, pH, the amount of adsorbent and ionic strength were investigated and optimized in detail. Under the optimum conditions, the limits of detection were 0.35-0.43 microg/L for four phthalate esters. The proposed method has been applied to the analysis of rainwater and tap water samples. And satisfactory spiked recoveries were obtained in the range of 75.0-114.2%. All the results indicated that the bamboo charcoal has great potential as a novel adsorbent material for the enrichment and determination of phthalate esters in real environmental water samples.  相似文献   

16.
GC-EI-MS内标法分析鱼肉中邻苯二甲酸酯   总被引:3,自引:0,他引:3  
谭君  林竹光 《化学学报》2007,65(24):2875-2882
鱼肉样品以Florisil硅藻土层析柱净化后, 经气相色谱-电子轰击离子源-质谱法(GC-EI-MS)分析其中8种邻苯二甲酸酯(PAEs)含量: 邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丙酯(DPrP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二戊酯(DPeP)、邻苯二甲酸二环己基酯(DCHP)、邻苯二甲酸二己酯(DHP)、邻苯二甲酸二(2-乙基己基)酯(DEHP). 比较了外标和内标法定量, 并确定苯甲酸苄基酯为内标物; 优化了提取剂、吸附剂和洗脱剂的种类, 以及洗脱体积等样品前处理方法; 尤其对分析空白的控制问题进行了详细讨论; 准确分析了5种鱼样品中此类物质含量. 该方法的线性范围为50.0~800 μg•L-1, 相关系数(R)大于0.99986, 相对标准偏差(Relative standard deviation, RSD)均小于12.7%, 检测限(Limit of detection, LOD)低于3.66 μg•L-1, 样品的加标回收率为74.0%~113%. 其线性范围、相关系数、准确度、精密度和LOD等指标均满足鱼肉中多种PAEs同时分析的要求.  相似文献   

17.
A technique of ultrasound-assisted low density solvent based dispersive liquid-liquid microextraction was developed for the determination of four phthalate esters, including dimethyl phthalate(DMP), diethyl phthalate(DEP), di-n-butyl phthalate(DnBP) and di(2-ethylhexyl) phthalate(DEHP) in bottled water samples. A low density solvent, toluene, was selected as extraction solvent. In the extraction process, a mixture of 15 μL of toluene(extraction solvent) and 100 μL of methanol(disperser solvent) was rapidly injected into 1.0 mL of water samples. A cloudy solution was formed after ultrasounded for 5 min, and then centrifuged at 5000 r/min for 5 min. The enriched analytes in the floating phase were determined by means of gas chromatograph. Under the optimum conditions, the enrichment factors were found to be in a range of 29-67, and the recoveries were ranged from 81.2% to 103.9%. The limits of the detection were in a range of 3.8-5.6 μg/L. The proposed method was applied to the extraction and determination of phthalate esters in bottled water samples, and the concentrations of phthalate esters found in the water samples were below the allowable levels.  相似文献   

18.
A simple and economic method for the analysis of phthalate esters, dimethyl phthalate, diethyl phthalate, di-iso-butyl phthalate, di-n-butyl phthalate, and di-2-ethylhexyl phthalate in cow milk samples by means of gas chromatography-flame ionization detection and gas chromatography-mass spectrometry has been developed. In this work, NaCl and ACN were added to 5 mL of the milk sample as the salting out agent and extraction solvent, respectively. After manual shaking, the mixture was centrifuged. In the presence of NaCl, a two-phase system was formed: upper phase - acetonitrile containing phthalate esters -and lower phase - aqueous phase containing soluble compounds and the precipitated proteins. After the extraction of phthalate esters from milk, a portion of supernatant phase (acetonitrile) was removed, mixed with 1,2-dibromoethane at microliter level and injected by syringe into NaCl solution. After the extraction of the selected phthalate esters into 1,2-dibromoethane, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. Under the optimum extraction conditions, low limits of detection and quantification between 1.5-3 and 2.5-11 ng/mL, respectively was observed. Enrichment factors were in the range of 397-499. The relative standard deviations for the extraction of 100 ng/mL of each phthalate ester were in the range of 3-4% (n = 6). Finally, some milk samples were successfully analyzed using the proposed method and two analytes, di-n-butyl phthalate and di-2-ethylhyxel phthalate, were determined in them in nanogram per milliliter level.  相似文献   

19.
张莉  尚楚翔  孙成 《色谱》2014,32(6):653-657
建立了气相色谱-三重四极杆质谱(GC-QQQ MS)同时测定生脉饮中17种邻苯二甲酸酯类化合物(PAE)残留量的方法。样品经正己烷振摇提取后进行检测。采用Agilent HP-5MS毛细管色谱柱(30 m×0.25 mm×0.25 μm)在程序升温条件下进行色谱分离;质谱以电子轰击(EI)为电离方式,采用多反应监测(MRM)模式进行监测。实验结果表明:17种PAE在0.5~20 mg/L范围内呈线性关系,r均大于0.99;平均加标回收率除邻苯二甲酸二甲酯(DMP)为51.9%、邻苯二甲酸二乙酯(DEP)为77.2%外,其余15种为91.8%~117.2%,RSD(n=6)为0.5%~5.4%。该方法操作简便,准确可靠,灵敏度高,专属性强,可用于生脉饮中邻苯二甲酸酯类化合物残留量的检测,以控制生脉饮的用药安全。  相似文献   

20.
植物中酞酸酯的分析测定研究   总被引:5,自引:0,他引:5  
建立了二氯甲烷超声提取、小粒径硅胶住色谱项分离、UV-HPLC测定植物中酞酸酯的方法,简便、快速,可使酞酸酯与杂质有效分离,回收率为85%~101%。用于实际植物样品中酞酸酯的测定,结果满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号