首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
单源前体合成水溶性的CdS和ZnS纳米晶   总被引:1,自引:0,他引:1  
0引言量子点(QuantumDots)一般指半径小于或接近玻尔激子半径的半导体纳米晶颗粒。和有机染料分子相比,无机半导体纳米晶的带隙宽度可通过简单  相似文献   

2.
Strong alkaline hydrothermal environment was constructed through adjusting the KOH concentration in solution for the synthesis of Cu2−xTe nanocrystals. The Cu2−xTe nanowires were successfully obtained by hydrothermal method without using any template or capping agent. The as-synthesized nanowires were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). The Cu2−xTe nanowires with lengths up to hundreds of micrometers have a single crystal hexagonal structure and grow along the [11], [12], [13], [14], [15], [16], [17], [18] , [19] and [20] direction. A growth mechanism was proposed based on the characterization results. The energy gap of as-synthesized Cu2−xTe nanowires is ca.1.1 eV for direct band transition or 0.7 eV for indirect band transition. The structural phase transformations occur at 322, 353 and 477 °C. And the Cu2−xTe nanowires exhibit the metal electrical conductivity.  相似文献   

3.
A novel selenium source was developed to synthesize the size-controlled CdSe nanocrystals with relatively narrow size distribution successfully in a two-phase thermal approach. A highly reactive and aqueous soluble selenium source was provided by the reduction of selenite, and in this route the size of the nanocrystals can be adjusted by the reaction temperature and time. The size, crystalline structure and optical characteristics of these nanocrystals were investigated by transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, UV–vis spectroscopy, and photoluminescence spectroscopy. The influence factors for this approach were also discussed.  相似文献   

4.
A general and facile approach has been developed to prepare various metal oxide nanocrystals from commercially available metal acetate precursors using an amine-mediated reaction. The influence of temperature and capping agents on the yield and final morphology of the metal oxides nanocrystals was investigated. The approach was applied in the synthesis of shape-controlled ZnO nanocrystals. ZnO nanowires, nanorods, bullets and triangular nanocrystals were successfully prepared by tuning the molar ratio between amine to zinc acetate precursor. On the basis of FTIR and NMR spectroscopic studies, we propose that the amine could mediate the breakdown of the metal acetates through a nucleophilic attack mechanism. The results suggest that amine can play dual role as both the attacking agent and capping agent in this new methodology.  相似文献   

5.
Hexagonal-phase core-shell-structured NaYF 4:Yb,Tm@beta-NaYF 4:Yb,Er and beta-NaYF 4:Yb,Tm@beta-NaYF 4:Yb,Er@beta-NaYF 4:Yb,Tm nanocrystals were synthesized by a seeded growth approach. beta-NaYF 4:Yb,Tm nanocrystals with 20 nm diameter were used as seed crystals to induce the growth of beta-NaYF 4:Yb,Er and then beta-NaYF 4:Yb,Tm crystals, resulting in the formation of core-shell-structured nanocrystals with upconverting lanthanide ions Tm and Er doped in the core and shell, respectively.  相似文献   

6.
We report a simple solvothermal synthesis approach to the growth of CuInS(2) nanocrystals with zincblende- and wurtzite-phase structures. Zincblende nanocrystals with particle sizes of 10-20 nm were produced using oleylamine as the solvent. When ethylenediamine was used as the solvent, similarly sized wurtzite nanocrystals with some degree of particle aggregation were formed. Use of a mixture of these solvents gave products with mixed phases including some polyhedral nanostructures. The crystal phases of these nanocrystals were carefully determined by X-ray diffraction and transmission electron microscopy analysis. All the samples exhibit strong absorption from the entire visible light region to the near-infrared region beyond 1300 nm. Pure-phase zincblende and wurtzite CuInS(2) nanocrystals were employed as ink in the fabrication of solar cells. The spray-coated nanocrystal layer was subjected to a selenization process. A power conversion efficiency of ~0.74% and a good external quantum efficiency profile over broad wavelengths have been measured. The results demonstrate that wurtzite and zincblende CuInS(2) nanocrystals may be attractive precursors to light-absorbing materials for making efficient photovoltaic devices.  相似文献   

7.
Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals   总被引:2,自引:0,他引:2  
In this paper, we report a new doping approach using a three-step synthesis to make high-quality Mn-doped CdS/ZnS core/shell nanocrystals. This approach allows precise control of the Mn radial position and doping level in the core/shell nanocrystals. On the basis of this synthetic advance, we have demonstrated the first example in which optical properties of Mn-doped nanocrystals strongly depend on Mn radial positions inside the nanocrystals. In addition, we have synthesized nanocrystals with a room-temperature Mn-emission quantum yield of 56%, which is nearly twice as high as that of the best Mn-doped nanocrystals reported previously. Nanocrystals with such a high-emission quantum yield are very important to applications such as nanocrystal-based biomedical diagnosis.  相似文献   

8.
Seed‐mediated growth is a powerful and versatile approach for the synthesis of colloidal metal nanocrystals. The vast allure of this approach mainly stems from the staggering degree of control one can achieve over the size, shape, composition, and structure of nanocrystals. These parameters not only control the properties of nanocrystals but also determine their relevance to, and performance in, various applications. The ingenuity and artistry inherent to seed‐mediated growth offer extensive promise, enhancing a number of existing applications and opening the door to new developments. This Review demonstrates how the diversity of metal nanocrystals can be expanded with endless opportunities by using seeds with well‐defined and controllable internal structures in conjunction with a proper combination of capping agent and reduction kinetics. New capabilities and future directions are also highlighted.  相似文献   

9.
<正>过渡金属硫化物纳米晶因其特异的结构具有量子尺寸效应、小尺寸效应、表面效应等效应,显示出不同于体相材料的光电磁性质,因而成为近年来纳米科学研究的热点[1-3]。几十年来,硫化亚铁(FeS)  相似文献   

10.
Q Dai  G Zhang  P Liu  J Wang  J Tang 《Inorganic chemistry》2012,51(17):9232-9239
CdMoO(4):Mn nanocrystals with a tetragonal crystal structure were prepared by aqueous coprecipitation method at a low temperature of 2 °C under different pH values. The size of the CdMoO(4):Mn nanocrystals of spherical morphology increases with the Mn dopant concentration from 35 to 55 nm for pH = 4. The morphology could be tuned from nanocrystals to microstructures consisting of smaller nanoparticles by the Mn concentration when the pH value of the precursor was increased to 8. The thermal stability of the luminescence and magnetic properties of the Mn-doped samples also depend on the pH and the doping level. The effects of the pH and dopant on the luminescence and magnetic properties, including magnetic susceptibility and electron paramagnetic resonance, were investigated. This approach contributes to better understanding of aqueous chemistry methods to control the growth of nanocrystals.  相似文献   

11.
Highly luminescent positively charged CdTe nanocrystals were prepared from a facile and reproducible approach by the reaction of Cd2+ and HTe? in the presence of mercaptoethylamine. The influence of various experimental variables, including pH value, growth temperature, Te-to-Cd ratio, as well as Cd-to-ligand ratio, on the growth rate and optical properties of CdTe nanocrystals have been systematically investigated. Experimental results indicate that the pH value and Te-to-Cd molar ratio play the crucial role in determining luminescent properties of the obtained CdTe nanocrystals. The mechanism for the resulting high-quality optical properties of the resulting CdTe nanocrystals was also elucidated.  相似文献   

12.
The new biological approach was examined to fabricate shape-controlled Ag nanocrystals grown directly on surfaces, inspired by nature that various shapes of nanocrystals are produced accurately and reproducibly in biological systems. Here we demonstrate the direct growth of hexagon-shaped Ag nanocrystals on sequenced peptide-coated nanotubes via biological recognition. When the peptide, Asn-Pro-Ser-Ser-Leu-Phe-Arg-Tyr-Leu-Pro-Ser-Asp, recognizing and effecting the Ag nanocrystal growth on the (111) face, was sequenced and incorporated onto template nanotube surfaces, the biomineralization of Ag ions on the nanotubes led the isotropic hexagon-shaped Ag nanocrystal coating under pH control of the growth solution. Multiple Ag nanocrystal shapes were observed when the peptide mineralized Ag ions without the template nanotubes, and therefore the template nanotube has a significant influence on regulating the majority of Ag nanocrystals into the hexagonal shape. This biological approach, using specific peptide sequences on surfaces to control nanocrystal shapes, may be developed as a simple and economical method to produce building blocks with desired physical properties for new generation of electronics, sensors, and optical devices.  相似文献   

13.
A new approach for the synthesis of uniform metal-organic framework (MOF) nanocrystals with controlled sizes and aspect ratios has been developed using simultaneously the non-ionic triblock co-polymer F127 and acetic acid as stabilizing and deprotonating agents, respectively. The alkylene oxide segments of the triblock co-polymer can coordinate with metal ions and stabilize MOF nuclei in the early stage of the formation of MOF nanocrystals. Acetic acid can control the deprotonation of carboxylic linkers during the synthesis and, thus, enables the control of the rate of nucleation, leading to the tailoring of the size and aspect ratio (length/width) of nanocrystals. Fe-MIL-88B-NH(2), as an iron-based MOF crystal, was selected as a typical example to illustrate our approach. The results reveal that this approach is used for not only the synthesis of uniform nanocrystals but also the control of the size and aspect ratio of the materials. The size and aspect ratio of nanocrystals increase with an increase in the concentration of acetic acid in the synthetic mixture. The non-ionic triblock co-polymer F127 and acetic acid can be easily removed from the Fe-MIL-88B-NH(2) nanocrystal products by washing with ethanol, and thus, their amine groups are available for practical applications. The approach is expected to synthesize various nanosized carboxylate-based MOF members, such as MIL-53, MIL-89, MIL-100, and MIL-101.  相似文献   

14.
A new biological approach to fabricate Au nanowires was examined by using sequenced peptide nanotubes as templates. The sequenced histidine-rich peptide molecules were assembled on nanotubes, and the biological recognition of the sequenced peptide selectively trapped Au ions for the nucleation of Au nanocrystals. After Au ions were reduced, highly monodisperse Au nanocrystals were grown on nanotubes. The conformations and the charge distributions of the histidine-rich peptide, determined by pH and Au ion concentration in the growth solution, control the size and the packing density of Au nanocrystals. The diameter of Au nanocrystal was limited by the spacing between the neighboring histidine-rich peptides on nanotubes. A series of TEM images of Au nanocrystals on nanotubes in the shorter Au ion incubation time periods reveal that Au nanocrystals grow inside the nanotubes first and then cover the outer surfaces of nanotubes. Therefore, multiple materials will be coated inside and outside the nanotubes respectively by controlling doping ion concentrations and their deposition sequences. It should be noted that metallic nanocrystals in diameter around 6 nm are in the size domain to observe a significant conductivity change by changing the packing density, and therefore this system may be developed into a conductivity-tunable building block.  相似文献   

15.
A variety of nearly monodisperse semiconductor nanocrystals, such as CdS, ZnS, and ZnS:Mn, with controllable aspect ratios have been successfully prepared through a facile synthetic process. These as-prepared nanocrystals were obtained from the reactions between metal ions and thioacetamide by employing octadecylamine or oleylamine as the surfactants. The effects of reaction temperature and time, ratios of thioacetamide to inorganic precursors, and the reactant content on the size and crystal purity of the nanorods, have been systematically investigated. The optical properties and the formation mechanism of the nanorods have also been discussed. For the next biolabel applications, these hydrophobic nanocrystals have also been transferred into hydrophilic colloidal spheres by means of an emulsion-based bottom-up self-assembly approach.  相似文献   

16.
We present a straightforward, economically viable, and "green" approach for the synthesis and stabilization of relatively monodisperse Au nanocrystals with an average diameter of 8.2 nm (standard deviation, SD=2.3 nm) by using nontoxic and renewable biochemical of beta-D-glucose and by simply adjusting the pH environment in aqueous medium. The beta-D-glucose acts both as reducing agent and capping agent for the synthesis and stabilization of Au nanocrystals in the system. The UV/Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), electron diffraction (ED), and X-ray diffraction (XRD) techniques were employed to systematically characterize Au nanocrystals synthesized. Additionally, it is shown that these beta-D-glucose-stabilized Au nanocrystals function as effective catalyst for the reduction of 4-nitrophenol in the presence of NaBH4 (otherwise unfeasible if only the strong reducing agent NaBH4 is employed), which was reflected by the UV/Vis spectra of the catalytic reaction kinetics.  相似文献   

17.
A homogeneous and disordered assembly of densely packed nanocrystals 2-3 nm in size was synthesized at room temperature in an aqueous solution without the assistance of any organic molecules. The assembled nanocrystals of titanium oxides, such as anatase titanium dioxide, sodium titanate, and a solid solution with rutile tin dioxide, formed macroscopic transparent objects 2-5 mm in size. In general, it is not easy to obtain homogeneous and disordered assembly of nanocrystals without assistance of any organic molecules for the inhibition of inhomogeneous and disordered aggregation. In the present work, the formation of the hydrated layer on the surface of nanocrystals facilitated the homogeneous and disordered assembly. The crystal phases and the compositions of the nanocrystals were controlled by the tuning of the synthetic conditions, such as the initial pH and metal source concentration. Based on the formation processes and mechanisms, this approach for the coupled synthesis and assembly can be applied to a variety of nanomaterials for preparation of homogeneous but disordered assembly.  相似文献   

18.
A simple solvothermal approach employing oleic acid has been developed to prepare anatase TiO2 nanocrystals with different shapes, which were tuned from nanorods to nano-ellipsoids by increasing the amount of NaF from 0 to 0.5 mmol, and the optical band gap decreased from 3.47 eV to 3.29 eV accordingly. However, when the fluoride was changed to NH4F, the resultant TiO2 nanocrystals possessed an anatase phase but weremade up of smaller-sized nanocrystals and nanorods, and the band gap was increased to 3.53 eV. The X-ray photoelectron spectroscopy (XPS) results illustrated an increase of fluorine content with an increasing amount of NaF could account for the variation of the shape and optical band gap of TiO2 nanocrystals. Moreover, the absence of fluorine content brought about less change of shape and increase of optical band gap of the product synthesized in the presence of NH4F. This result may offer another way to alter the shape and band gap of metal oxide nanocrystals with the assistance of fluoride.  相似文献   

19.
In this paper, we demonstrate a simple and general "dispersion-decomposition" approach to the synthesis of metal sulfide nanocrystals with the assistance of alkylthiol. This is a direct heating process without precursor injection. By using inorganic metal salts and alkylthiol as the raw materials, high-quality Ag(2)S, Cu(2)S, PbS, Ni(3)S(4), CdS, and ZnS nanocrystals were successfully synthesized. The mechanism study shows that the reaction undergoes two steps. A key intermediate compound, metal thiolate, is generated first. It melts and disperses into the solvent at a relatively low temperature, and then it decomposes into metal sulfide as a single precursor upon heating. This method avoids using toxic phosphine agent and injection during the reaction process. The size and shape of the nanocrystal can be also controlled by the concentration of the reactant and ligands. Furthermore, the optical properties and assembly of the nanocrystals have also been studied. This report provides a facile, direct-heating "dispersion-decomposition" approach to synthesize metal sulfides nanocrystals that has potential for future large-scale synthesis.  相似文献   

20.
Multifunctional colloidal core-shell nanoparticles of magnetic nanocrystals (of iron oxide or FePt) or gold nanorods encapsulated in silica shells doped with the fluorescent dye, Tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy) were synthesized. The as-prepared magnetic nanocrystals are initially hydrophobic and were coated with silica using a microemulsion approach, while the as-prepared gold nanorods are hydrophilic and were coated with silica using a Stöber type of process. Each approach yielded monodisperse nanoparticles with uniform fluorescent dye-doped silica shells. These colloidal heterostructures have the potential to be used as dual-purpose tags—exhibiting a fluorescent signal that could be combined with either dark-field optical contrast (in the case of the gold nanorods), or enhanced contrast in magnetic resonance images (in the case of magnetic nanocrystal cores). The optical and magnetic properties of the fluorescent silica-coated gold nanorods and magnetic nanocrystals are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号